Design and Optimal Sizing of Microgrids

  • Juan M. ReyEmail author
  • Pedro P. Vergara
  • Javier Solano
  • Gabriel Ordóñez


This chapter introduces concepts to understand, formulate, and solve a microgrid design and optimal sizing problem. First, basic concepts of energy potential assessment are introduced, in order to determine if a location is suitable for PV and wind generation systems implementation. Second, different modeling approaches are presented and the required characteristics for the optimal microgrid sizing problem are discussed. Third, basic concepts about load estimation for the design and sizing of microgrids are introduced. Fourth, the most common microgrid sizing criteria are presented and classified according to the type of analysis. Fifth, basic concepts related to multi-objective optimization are introduced and some common design approaches and optimization algorithms are presented, emphasizing into multi-objective genetic algorithms. In addition, microgrids design commercial software is reviewed. Sixth, some IEEE standards related to the design, operation, and implementation of microgrids are presented. Finally, the chapter concludes with key remarks on microgrid design and sizing problem.


Microgrids Optimal sizing Multi-objective optimization Design criteria 


  1. 1.
    Bernal-Agustín, J. L., & Dufo-López, R. (2009). Simulation and optimization of stand-alone hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 13(8), 2111–2118.CrossRefGoogle Scholar
  2. 2.
    Khatib, T., Mohamed, A., & Sopian, K. (2013). A review of photovoltaic systems size optimization techniques. Renewable and Sustainable Energy Reviews, 22, 454–465.CrossRefGoogle Scholar
  3. 3.
    Zhou, W., Lou, C., Li, Z., Lu, L., & Yang, H. (2010). Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Applied Energy, 87(2), 380–389.CrossRefGoogle Scholar
  4. 4.
    Chauhan, A., & Saini, R. P. (2014). A review on integrated renewable energy system based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control. Renewable and Sustainable Energy Reviews, 38, 99–120.CrossRefGoogle Scholar
  5. 5.
    Upadhyay, S., & Sharma, M. P. (2014). A review on configurations, control and sizing methodologies of hybrid energy systems. Renewable and Sustainable Energy Reviews, 38, 47–63.CrossRefGoogle Scholar
  6. 6.
    Sinha, S., & Chandel, S. S. (2015). Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renewable and Sustainable Energy Reviews, 50, 755–769.CrossRefGoogle Scholar
  7. 7.
    Al Busaidi, A. S., Kazem, H. A., Al-Badi, A. H., & Farooq Khan, M. (2016). A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman. Renewable and Sustainable Energy Reviews, 53, 185–193.CrossRefGoogle Scholar
  8. 8.
    Ucar, A., & Balo, F. (2010). Assessment of wind power potential for turbine installation in coastal areas of Turkey. Renewable and Sustainable Energy Reviews, 14(7), 1901–1912.CrossRefGoogle Scholar
  9. 9.
    Suarez, R. A., Toscano, P., Siri, R., Muse, P., & Abal, G. (2012). Recent advances in solar resource assessment in Uruguay. 2012 Sixth IEEE/PES Transmission and Distribution: Latin America Conference and Exposition (T&D-LA) (pp. 1–7).Google Scholar
  10. 10.
    Prasad, R. D., Bansal, R. C., & Sauturaga, M. (2009). Some of the design and methodology considerations in wind resource assessment. IET Renewable Power Generation, 3(1), 53.CrossRefGoogle Scholar
  11. 11.
    Osma Pinto, G. A., & Plata, G. O. (2012). Design of a photovoltaic-wind power generation system with grid connection and two micro-grids. 2012 I.E. International Symposium on Alternative Energies and Energy Quality (SIFAE) (pp. 1–6).Google Scholar
  12. 12.
    de Araujo Lima, L., & Bezerra Filho, C. R. (2010). Wind energy assessment and wind farm simulation in Triunfo—Pernambuco, Brazil. Renewable Energy, 35(12), 2705–2713.CrossRefGoogle Scholar
  13. 13.
    Đurišić, Ž., & Mikulović, J. (2012). A model for vertical wind speed data extrapolation for improving wind resource assessment using WAsP. Renewable Energy, 41, 407–411.CrossRefGoogle Scholar
  14. 14.
    Migoya, E., Crespo, A., Jiménez, Á., García, J., & Manuel, F. (2007). Wind energy resource assessment in Madrid region. Renewable Energy, 32(9), 1467–1483.CrossRefGoogle Scholar
  15. 15.
    Castellanos, F., & Ramesar, V. I. (2006). Characterization and estimation of wind energy resources using autoregressive modelling and probability density functions. Wind Engineering, 30(1), 1–14.CrossRefGoogle Scholar
  16. 16.
    Maunsell, D., Lyons, T. J., & Whale, J. (1997). Wind resource assessment of a site in Western Australia. Solar 2004 Life, Universe Renewables (pp. 1–10).Google Scholar
  17. 17.
    Ordóñez, G., Osma, G., Vergara, P., & Rey, J. (2014). Wind and solar energy potential assessment for development of renewables energies applications in Bucaramanga, Colombia. IOP Conference Series Materials Science and Engineering, 59, 12004.CrossRefGoogle Scholar
  18. 18.
    Ahmed, A. S. (2010). Wind energy as a potential generation source at Ras Benas, Egypt. Renewable and Sustainable Energy Reviews, 14(8), 2167–2173.CrossRefGoogle Scholar
  19. 19.
    Yaniktepe, B., Koroglu, T., & Savrun, M. M. (2013). Investigation of wind characteristics and wind energy potential in Osmaniye, Turkey. Renewable and Sustainable Energy Reviews, 21, 703–711.CrossRefGoogle Scholar
  20. 20.
    Ouammi, A., Dagdougui, H., Sacile, R., & Mimet, A. (2010). Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy). Renewable and Sustainable Energy Reviews, 14(7), 1959–1968.CrossRefGoogle Scholar
  21. 21.
    Duan, W., Chen, J., & Feng, H. (2011). Comparative research on methods of calculating Weibull distribution parameters of wind speed. 2011 Asia-Pacific Power and Energy Engineering Conference, no. 916021018 (pp. 1–4).Google Scholar
  22. 22.
    Ilinca, A., McCarthy, E., Chaumel, J.-L., & Rétiveau, J.-L. (2003). Wind potential assessment of Quebec Province. Renewable Energy, 28(12), 1881–1897.CrossRefGoogle Scholar
  23. 23.
    Bosch, J. L., Batlles, F. J., Zarzalejo, L. F., & López, G. (2010). Solar resources estimation combining digital terrain models and satellite images techniques. Renewable Energy, 35(12), 2853–2861.CrossRefGoogle Scholar
  24. 24.
    Gurtuna, O., & Prevot, A. (2011) An overview of solar resource assessment using meteorological satellite data. Proceedings of 5th International Conference on Recent Advances in Space Technologies—RAST2011 (pp. 209–212).Google Scholar
  25. 25.
    Khare, V., Nema, S., & Baredar, P. (2016). Solar–wind hybrid renewable energy system: A review. Renewable and Sustainable Energy Reviews, 58, 23–33.CrossRefGoogle Scholar
  26. 26.
    Ibrahim, S., Daut, I., Irwan, Y. M., Irwanto, M., Gomesh, N., & Farhana, Z. (2012). Linear regression model in estimating solar radiation in Perlis. Energy Procedia, 18, 1402–1412.CrossRefGoogle Scholar
  27. 27.
    Martins, F. R., Pereira, E. B., Silva, S. A. B., Abreu, S. L., & Colle, S. (2008). Solar energy scenarios in Brazil, Part one: Resource assessment. Energy Policy, 36(8), 2853–2864.CrossRefGoogle Scholar
  28. 28.
    Pourmousavi, S. A., Nehrir, M. H., & Sharma, R. K. (2015). Multi-timescale power management for islanded microgrids including storage and demand response. IEEE Transactions on Smart Grid, 6(3), 1185–1195.CrossRefGoogle Scholar
  29. 29.
    Nfah, E. M., Ngundam, J. M., & Tchinda, R. (2007). Modelling of solar/diesel/battery hybrid power systems for far-north Cameroon. Renewable Energy, 32(5), 832–844.CrossRefGoogle Scholar
  30. 30.
    Slootweg, J. G., de Haan, S. W. H., Polinder, H., & Kling, W. L. (2003). General model for representing variable speed wind turbines in power system dynamics simulations. IEEE Transactions on Power Apparatus and Systems, 18(1), 144–151.CrossRefGoogle Scholar
  31. 31.
    Bouscayrol, A., Delarue, P., & Guillaud, X. (2005). Power strategies for maximum control structure of a wind energy conversion system with a synchronous machine. Renewable Energy, 30(15), 2273–2288.CrossRefGoogle Scholar
  32. 32.
    Adamo, F., Attivissimo, F., Di Nisio, A., & Spadavecchia, M. (2011). Characterization and testing of a tool for photovoltaic panel modeling. IEEE Transactions on Instrumentation and Measurement, 60(5), 1613–1622.CrossRefGoogle Scholar
  33. 33.
    Saloux, E., Teyssedou, A., & Sorin, M. (2011). Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point. Solar Energy, 85(5), 713–722.CrossRefGoogle Scholar
  34. 34.
    Carrero, C., Amador, J., & Arnaltes, S. (2007). A single procedure for helping PV designers to select silicon PV modules and evaluate the loss resistances. Renewable Energy, 32(15), 2579–2589.CrossRefGoogle Scholar
  35. 35.
    Ma, T., Yang, H., & Lu, L. (2014). Solar photovoltaic system modeling and performance prediction. Renewable and Sustainable Energy Reviews, 36, 304–315.CrossRefGoogle Scholar
  36. 36.
    Arun, P., Banerjee, R., & Bandyopadhyay, S. (2008). Optimum sizing of battery-integrated diesel generator for remote electrification through design-space approach. Energy, 33(7), 1155–1168.CrossRefGoogle Scholar
  37. 37.
    Horrein, L., Bouscayrol, A., Cheng, Y., & El Fassi, M. (2015). Dynamical and quasi-static multi-physical models of a diesel internal combustion engine using energetic macroscopic representation. Energy Conversion and Management, 91, 280–291.CrossRefGoogle Scholar
  38. 38.
    Baert, J., Jemei, S., Chamagne, D., Hissel, D., Hibon, S., & Hegy, D. (2012). Energetic macroscopic representation of a naturally-aspirated engine coupled to a salient pole synchronous machine. IFAC Proceedings, 45(21), 435–440.CrossRefGoogle Scholar
  39. 39.
    Wang, K., Hissel, D., Péra, M. C., Steiner, N., Marra, D., Sorrentino, M., Pianese, C., Monteverde, M., Cardone, P., & Saarinen, J. (2011). A review on solid oxide fuel cell models. International Journal of Hydrogen Energy, 36(12), 7212–7228.CrossRefGoogle Scholar
  40. 40.
    Boulon, L., Hissel, D., Bouscayrol, A., & Pera, M.-C. (2010). From modeling to control of a PEM fuel cell using energetic macroscopic representation. IEEE Transactions on Industrial Electronics, 57(6), 1882–1891.CrossRefGoogle Scholar
  41. 41.
    Correa, J. M., Farret, F. A., Canha, L. N., & Simoes, M. G. (2004). An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Transactions on Industrial Electronics, 51(5), 1103–1112.CrossRefGoogle Scholar
  42. 42.
    Mann, R. F., Amphlett, J. C., Hooper, M. A. I., Jensen, H. M., Peppley, B. A., & Roberge, P. R. (2000). Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources, 86(1–2), 173–180.CrossRefGoogle Scholar
  43. 43.
    Ceraolo, M. (2000). New dynamical models of lead-acid batteries. IEEE Transactions on Power Apparatus and Systems, 15(4), 1184–1190.CrossRefGoogle Scholar
  44. 44.
    Tremblay, O., Dessaint, L., & Dekkiche, A. (2007). A generic battery model for the dynamic simulation of hybrid electric vehicles. 2007 I.E. Vehicle Power and Propulsion Conference (pp. 284–289).Google Scholar
  45. 45.
    Shi, L., & Crow, M. L. (2008). Comparison of ultracapacitor electric circuit models. 2008 I.E. Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century (pp. 1–6).Google Scholar
  46. 46.
    Devillers, N., Jemei, S., Péra, M.-C., Bienaimé, D., & Gustin, F. (2014). Review of characterization methods for supercapacitor modelling. Journal of Power Sources, 246, 596–608.CrossRefGoogle Scholar
  47. 47.
    Zubieta, L., & Bonert, R. (2000). Characterization of double-layer capacitors for power electronics applications. IEEE Transactions on Industry Applications, 36(1), 199–205.CrossRefGoogle Scholar
  48. 48.
    Rafik, F., Gualous, H., Gallay, R., Crausaz, A., & Berthon, A. (2007). Frequency, thermal and voltage supercapacitor characterization and modeling. Journal of Power Sources, 165(2), 928–934.CrossRefGoogle Scholar
  49. 49.
    Solano, J., Hissel, D., & Pera, M. C. (2013). Modeling and parameter identification of ultracapacitors for hybrid electrical vehicles. 2013 I.E. Vehicle Power and Propulsion Conference (VPPC) (pp. 1–4).Google Scholar
  50. 50.
    Piller, S., Perrin, M., & Jossen, A. (2001). Methods for state-of-charge determination and their applications. Journal of Power Sources, 96(1), 113–120.CrossRefGoogle Scholar
  51. 51.
    Ng, K. S., Moo, C.-S., Chen, Y.-P., & Hsieh, Y.-C. (2009). Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Applied Energy, 86(9), 1506–1511.CrossRefGoogle Scholar
  52. 52.
    Sivarasu, S. R., Chandira Sekaran, E., & Karthik, P. (2015). Development of renewable energy based microgrid project implementations for residential consumers in India: Scope, challenges and possibilities. Renewable and Sustainable Energy Reviews, 50, 256–269.CrossRefGoogle Scholar
  53. 53.
    Menezes, A. C., Cripps, A., Buswell, R. A., Wright, J., & Bouchlaghem, D. (2014). Estimating the energy consumption and power demand of small power equipment in office buildings. Energy and Buildings, 75, 199–209.CrossRefGoogle Scholar
  54. 54.
    Caquilpan, V., Saez, D., Hernandez, R., Llanos, J., Roje, T., & Nunez, A. (2017). Load estimation based on self-organizing maps and Bayesian networks for microgrids design in rural zones. 2017 I.E. PES Innovative Smart Grid Technologies Conference—Latin America (ISGT Latin America) (pp. 1–6).Google Scholar
  55. 55.
    Llanos, J., Saez, D., Palma-Behnke, R., Nunez, A., & Jimenez-Estevez, G. (2012). Load profile generator and load forecasting for a renewable based microgrid using Self Organizing Maps and neural networks. The 2012 International Joint Conference on Neural Networks (IJCNN) (pp. 1–8).Google Scholar
  56. 56.
    Verdu, S. V., Garcia, M. O., Senabre, C., Marin, A. G., & Franco, F. J. G. (2006). Classification, filtering, and identification of electrical customer load patterns through the use of self-organizing maps. IEEE Transactions on Power Apparatus and Systems, 21(4), 1672–1682.CrossRefGoogle Scholar
  57. 57.
    Diaf, S., Diaf, D., Belhamel, M., Haddadi, M., & Louche, A. (2007). A methodology for optimal sizing of autonomous hybrid PV/wind system. Energy Policy, 35(11), 5708–5718.CrossRefGoogle Scholar
  58. 58.
    Martinez, A., Abbes, D., & Champenois, G. (2012). Eco-design optimisation of an autonomous hybrid wind–photovoltaic system with battery storage. IET Renewable Power Generation, 6(5), 358–371.CrossRefGoogle Scholar
  59. 59.
    Diaf, S., Notton, G., Belhamel, M., Haddadi, M., & Louche, A. (2008). Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions. Applied Energy, 85(10), 968–987.CrossRefGoogle Scholar
  60. 60.
    McEvoy, A., Markvart, T., & Castaner, L. (2003). Practical handbook of photovoltaics: fundamental and applications. Amsterdam: Elsevier.Google Scholar
  61. 61.
    Stoppato, A. (2008). Life cycle assessment of photovoltaic electricity generation. Energy, 33(2), 224–232.CrossRefGoogle Scholar
  62. 62.
    Sherwani, A. F., Usmani, J. A., & Varun. (2010). Life cycle assessment of solar PV based electricity generation systems: A review. Renewable and Sustainable Energy Reviews, 14(1), 540–544.CrossRefGoogle Scholar
  63. 63.
    Sullivan, J. L., & Gaines, L. (2012). Status of life cycle inventories for batteries. Energy Conversion and Management, 58, 134–148.CrossRefGoogle Scholar
  64. 64.
    Fleck, B., & Huot, M. (2009). Comparative life-cycle assessment of a small wind turbine for residential off-grid use. Renewable Energy, 34(12), 2688–2696.CrossRefGoogle Scholar
  65. 65.
    Wang, L., & Singh, C. (2009). Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algorithm. IEEE Transactions on Energy Conversion, 24(1), 163–172.CrossRefGoogle Scholar
  66. 66.
    Fadaee, M., & Radzi, M. A. M. (2012). Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renewable and Sustainable Energy Reviews, 16(5), 3364–3369.CrossRefGoogle Scholar
  67. 67.
    Luna-Rubio, R., Trejo-Perea, M., Vargas-Vázquez, D., & Ríos-Moreno, G. J. (2012). Optimal sizing of renewable hybrids energy systems: A review of methodologies. Solar Energy, 86(4), 1077–1088.CrossRefGoogle Scholar
  68. 68.
    Bhandari, B., Lee, K.-T., Lee, G.-Y., Cho, Y.-M., & Ahn, S.-H. (2015). Optimization of hybrid renewable energy power systems: A review. International Journal of Precision Engineering and Manufacturing, 2(1), 99–112.CrossRefGoogle Scholar
  69. 69.
    Yann, C., & Patrick, S. (2004). Multiobjective optimization: principles and case studies. Berlin: Springer.zbMATHGoogle Scholar
  70. 70.
    Coello, C. A. C., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems (8th ed.). New York: Springer.zbMATHGoogle Scholar
  71. 71.
    Pareto, V. (1896). Cours D’economie politique. Lausanne: F.Rouge.Google Scholar
  72. 72.
    Brownlee, J. (2011). Clever algorithms: nature-inspired programming recipes. Melbourne.Google Scholar
  73. 73.
    Mellit, A., Kalogirou, S. A., Hontoria, L., & Shaari, S. (2009). Artificial intelligence techniques for sizing photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 13(2), 406–419.CrossRefGoogle Scholar
  74. 74.
    Li, J., Wei, W., & Xiang, J. (2012). A simple sizing algorithm for stand-alone PV/Wind/Battery hybrid microgrids. Energies, 5(12), 5307–5323.CrossRefGoogle Scholar
  75. 75.
    Yang, H., Wei, Z., & Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied Energy, 86(2), 163–169.CrossRefGoogle Scholar
  76. 76.
    Zhao, B., Zhang, X., Li, P., Wang, K., Xue, M., & Wang, C. (2014). Optimal sizing, operating strategy and operational experience of a stand-alone microgrid on Dongfushan Island. Applied Energy, 113, 1656–1666.CrossRefGoogle Scholar
  77. 77.
    Moradi, M. H., Eskandari, M., & Mahdi Hosseinian, S. (2015). Operational strategy optimization in an optimal sized smart microgrid. IEEE Transactions on Smart Grid, 6(3), 1087–1095.CrossRefGoogle Scholar
  78. 78.
    Di Silvestre, M. L., Graditi, G., & Riva Sanseverino, E. (2014). A generalized framework for optimal sizing of distributed energy resources in micro-grids using an indicator-based swarm approach. IEEE Transactions on Industrial Informatics, 10(1), 152–162.CrossRefGoogle Scholar
  79. 79.
    Barley, C. D., Winn, C. B., Flowers, L., & Green, H. J. (1995). Optimal control of remote hybrid power systems. Part I: Simplified model. Proceedings of WindPower’95, 1995.Google Scholar
  80. 80.
    Narkhede, M. S., Chatterji, S., & Ghosh, S. (2012). Trends and challenges in optimization techniques for operation and control of microgrid—A review. 2012 1st International Conference on Power and Energy in NERIST (ICPEN) (pp. 1–7).Google Scholar
  81. 81.
    Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International Transactions in Operational Research, 22(1), 3–18.MathSciNetCrossRefGoogle Scholar
  82. 82.
    Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms (2nd ed.). New York: Wiley.zbMATHGoogle Scholar
  83. 83.
    Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.CrossRefGoogle Scholar
  84. 84.
    Katsigiannis, Y. A., Georgilakis, P. S., & Karapidakis, E. S. (2010). Multiobjective genetic algorithm solution to the optimum economic and environmental performance problem of small autonomous hybrid power systems with renewables. IET Renewable Power Generation, 4(5), 404.CrossRefGoogle Scholar
  85. 85.
    E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength pareto evolutionary algorithm,” 2001.Google Scholar
  86. 86.
    Dufo-López, R., & Bernal-Agustín, J. L. (2008). Multi-objective design of PV–wind–diesel–hydrogen–battery systems. Renewable Energy, 33(12), 2559–2572.CrossRefGoogle Scholar
  87. 87.
    Turcotte, D., Ross, M., & Sheriff, F. (2001). Photovoltaic hybrid system sizing and simulation tools: status and needs. PV Horizon: workshop on photovoltaic hybrid systems (pp. 1–10).Google Scholar
  88. 88.
    HOMER (The Hybrid Optimization Model for Electric Renewables). Retrieved from
  89. 89.
    Sinha, S., & Chandel, S. S. (2014). Review of software tools for hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 32, 192–205.CrossRefGoogle Scholar
  90. 90.
    Erdinc, O., & Uzunoglu, M. (2012). Optimum design of hybrid renewable energy systems: Overview of different approaches. Renewable and Sustainable Energy Reviews, 16(3), 1412–1425.CrossRefGoogle Scholar
  91. 91.
    HYBRID2 (Hybrid Power Systems 2). Retrieved from
  92. 92.
    iHOGA (Improved hybrid optimization by genetic algorithm). Retrieved from
  93. 93.
    TRNSYS (Transient energy system simulation program). Retrieved from
  94. 94.
    “IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems.” IEEE Std. 1547-2003 (pp. 1–28), 2003.Google Scholar
  95. 95.
    “IEEE Guide for Design, Operation, and Integration of Distributed Resource Island Systems with Electric Power Systems.” IEEE Std 1547.4-2011 (pp. 1–54), 2011.Google Scholar
  96. 96.
    “IEEE Recommended Practice for Interconnecting Distributed Resources with Electric Power Systems Distribution Secondary Networks,” IEEE Std 1547.6-2011 (pp. 1–38), 2011.Google Scholar
  97. 97.
    “IEEE Guide for Conducting Distribution Impact Studies for Distributed Resource Interconnection.” IEEE Std 1547.7-2013 (pp. 1–137), 2014.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Juan M. Rey
    • 1
    Email author
  • Pedro P. Vergara
    • 2
  • Javier Solano
    • 1
  • Gabriel Ordóñez
    • 1
  1. 1.Universidad Industrial de Santander (UIS)BucaramangaColombia
  2. 2.University of Campinas (UNICAMP)CampinasBrazil

Personalised recommendations