Stability Issues in Microgrids

  • Javier Solano
  • Juan M. ReyEmail author
  • Juan D. Bastidas-Rodríguez
  • Andrés I. Hernández


This chapter introduces relevant concepts about stability issues in microgrids. First, general aspects related to microgrids, distributed generation, and stability are introduced. Stability classification in conventional power grids and the challenges emerging concerning stability in microgrids are discussed. Then, a brief literature review focusing on studies on stability impacts on MGs is presented. After this, some control strategies to improve the stability characteristics of the MGs are discussed. Then, microgrids hierarchical control and its design characteristics from a stability approach are presented. The chapter concludes with key findings and remarks.


Active and reactive power Communications Distributed generation Frequency and voltage stability Hierarchical control Microgrids Sizing and siting Smart grids Stability 


  1. 1.
    Kundur, P., Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Van Cutsem, T., Canizares, C., Hatziargyriou, N., Hill, D., Vittal, V., Stankovic, A., & Taylor, C. (2004). Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Apparatus and Systems, 19(3), 1387–1401.CrossRefGoogle Scholar
  2. 2.
    Kundur, P. Power system stability and control. New York: McGraw-Hill.Google Scholar
  3. 3.
    Mariani, V., Vasca, F., Vasquez, J. C., & Guerrero, J. M. (2015). Model order reductions for stability analysis of islanded microgrids with droop control. IEEE Transactions on Industrial Electronics, 62(7), 4344–4354.CrossRefGoogle Scholar
  4. 4.
    Zeng, Z., Yang, H., & Zhao, R. (2011). Study on small signal stability of microgrids: A review and a new approach. Renewable and Sustainable Energy Reviews, 15(9), 4818–4828.CrossRefGoogle Scholar
  5. 5.
    Slotine, J.-J. E., & Weiping, L. I. (1991). Applied nonlinear control. Upper Saddle River, NJ: Prentice-Hall.zbMATHGoogle Scholar
  6. 6.
    Calderaro, V., Milanovic, J. V., Kayikci, M., & Piccolo, A. (2009). The impact of distributed synchronous generators on quality of electricity supply and transient stability of real distribution network. Electric Power Systems Research, 79(1), 134–143.CrossRefGoogle Scholar
  7. 7.
    Meegahapola, L., & Flynn, D. (2010). Impact on transient and frequency stability for a power system at very high wind penetration. IEEE PES General Meeting (pp. 1–8).Google Scholar
  8. 8.
    Reza, M., Slootweg, J. G., Schavernaker, P. H., & van der Sluis, L. (2003). Investigating impacts of distributed generation on transmission system stability. 2003 I.E. Bologna Power Tech Conference Proceedings (Vol. 2, pp. 389–395).Google Scholar
  9. 9.
    Slootweg, J. G., & Kling, W. L. (2002). Impacts of distributed generation on power system transient stability. IEEE Power Engineering Society Summer Meeting (Vol. 2, pp. 862–867).Google Scholar
  10. 10.
    Reza, M., Schavemaker, P. H., Slootweg, J. G., Kling, W. L., & van der Sluis, L. (2004). Impacts of distributed generation penetration levels on power systems transient stability. IEEE Power Engineering Society General Meeting, 2004 (Vol. 2, pp. 2151–2156).Google Scholar
  11. 11.
    Srivastava, A. K., Kumar, A. A., & Schulz, N. N. (2012). Impact of distributed generations with energy storage devices on the electric grid. IEEE Systems Journal, 6(1), 110–117.CrossRefGoogle Scholar
  12. 12.
    Reza, M., Sudarmadi, D., Viawan, W., Kling, W., & Der Sluis, L. (2006). Dynamic stability of power systems with power electronic interfaced DG. 2006 I.E. PES Power Systems Conference and Exposition (pp. 1423–1428).Google Scholar
  13. 13.
    Nguyen, T. B., & Pai, M. A. (2008). A sensitivity-based approach for studying stability impact of distributed generation. International Journal of Electrical Power & Energy Systems, 30(8), 442–446.CrossRefGoogle Scholar
  14. 14.
    Sedghisigarchi, K., & Feliachi, A. (2002). Control of grid-connected fuel cell power plant for transient stability enhancement. 2002 I.E. Power Engineering Society Winter Meeting. Conference Proceedings (Cat. No.02CH37309) (Vol. 1, no. c, pp. 383–388).Google Scholar
  15. 15.
    Sedghisigarchi, K., & Feliachi, A. (2004). Dynamic and transient analysis of power distribution systems with fuel cells—Part II: Control and stability enhancement. IEEE Transactions on Energy Conversion, 19(2), 429–434.CrossRefGoogle Scholar
  16. 16.
    Edwards, F. V., Dudgeon, G. J. W., McDonald, J. R., & Leithead, W. E. (2000). Dynamics of distribution networks with distributed generation. 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134) (Vol. 2, no. bus 130, pp. 1032–1037).Google Scholar
  17. 17.
    Khani, D., Sadeghi Yazdankhah, A., & Madadi Kojabadi, H. (2012). Impacts of distributed generations on power system transient and voltage stability. International Journal of Electrical Power & Energy Systems, 43(1), 488–500.CrossRefGoogle Scholar
  18. 18.
    Katiraei, F., & Iravani, M. R. (2005). Transients of a micro-grid system with multiple distributed energy resources. International Conference on Power SystemsTransients (IPST’05) (pp. 1–6).Google Scholar
  19. 19.
    Ai, Q., Wang, X., & He, X. (2014). The impact of large-scale distributed generation on power grid and microgrids. Renewable Energy, 62, 417–423.CrossRefGoogle Scholar
  20. 20.
    Amelian, S. M., & Hooshmand, R. (2013). Small signal stability analysis of microgrids considering comprehensive load models—A sensitivity based approach. 2013 Smart Grid Conference (SGC) (pp. 143–149).Google Scholar
  21. 21.
    Kahrobaeian, A., & Mohamed, Y. A.-R. I. (2014). Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads. IEEE Transactions on Industrial Electronics, 61(4), 1643–1658.CrossRefGoogle Scholar
  22. 22.
    Azmy, A. M., & Erlich, I. (2005). Impact of distributed generation on the stability of electrical power systems. IEEE Power Engineering Society General Meeting, 2005 (pp. 1337–1344).Google Scholar
  23. 23.
    Donnelly, M. K., Dagle, J. E., Trudnowski, D. J., & Rogers, G. J. (1996). Impacts of the distributed utility on transmission system stability. IEEE Transactions on Power Apparatus and Systems, 11(2), 741–746.CrossRefGoogle Scholar
  24. 24.
    Boemer, J. C., Gibescu, M., & Kling, W. L. (2009). Dynamic models for transient stability analysis of transmission and distribution systems with distributed generation: An overview. 2009 I.E. Bucharest PowerTech (pp. 1–8).Google Scholar
  25. 25.
    Shuai, Z., Sun, Y., Shen, Z. J., Tian, W., Tu, C., Li, Y., & Yin, X. (2016). Microgrid stability: Classification and a review. Renewable and Sustainable Energy Reviews, 58, 167–179.CrossRefGoogle Scholar
  26. 26.
    Tang, X., Deng, W., & Qi, Z. (2014). Investigation of the dynamic stability of microgrid. IEEE Transactions on Power Apparatus and Systems, 29(2), 698–706.CrossRefGoogle Scholar
  27. 27.
    Ma, J., Wang, X., & Lan, X. (2012). Small-Signal stability analysis of microgrid based on perturbation theory. 2012 Asia-Pacific Power and Energy Engineering Conference, no. 50907021 (pp. 1–4).Google Scholar
  28. 28.
    Van Thong, V., Van Dommelen, D., Driesen, J., & Belmans, R. (2004). Impact of large scale distributed and unpredictable generation on voltage and angle stability of transmission system. International Council on Large Electric Systems, Session 2004 (pp. 1–8).Google Scholar
  29. 29.
    Pogaku, N., Prodanovic, M., & Green, T. C. (2007). Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Transactions on Power Electronics, 22(2), 613–625.CrossRefGoogle Scholar
  30. 30.
    Sun, J. (2009). Small-signal methods for AC distributed power systems–A review. IEEE Transactions on Power Electronics, 24(11), 2545–2554.CrossRefGoogle Scholar
  31. 31.
    Soultanis, N. L., Papathanasiou, S. A., & Hatziargyriou, N. D. (2007). A stability algorithm for the dynamic analysis of inverter dominated unbalanced LV microgrids. IEEE Transactions on Power Apparatus and Systems, 22(1), 294–304.CrossRefGoogle Scholar
  32. 32.
    Diaz, G., Gonzalez-Moran, C., Gomez-Aleixandre, J., & Diez, A. (2010). Composite loads in stand-alone inverter-based microgrids—Modeling procedure and effects on load margin. IEEE Transactions on Power Apparatus and Systems, 25(2), 894–905.CrossRefGoogle Scholar
  33. 33.
    Azadani, E. N., Canizares, C., & Bhattacharya, K. (2012). Modeling and stability analysis of distributed generation. 2012 I.E. Power and Energy Society General Meeting (pp. 1–8).Google Scholar
  34. 34.
    Guttromson, R. T. (2002). Modeling distributed energy resource dynamics on the transmission system. IEEE Transactions on Power Apparatus and Systems, 17(4), 1148–1153.CrossRefGoogle Scholar
  35. 35.
    Coelho, E. A. A., Cortizo, P. C., & Garcia, P. F. D. (1999). Small signal stability for single phase inverter connected to stiff AC system. Conference Record of the 1999 I.E. Industry Applications Conference. Thirty-Forth IAS Annual Meeting (Cat. No.99CH36370) (Vol. 4, pp. 2180–2187).Google Scholar
  36. 36.
    Iyer, S. V., Belur, M. N., & Chandorkar, M. C. (2010). A generalized computational method to determine stability of a multi-inverter microgrid. IEEE Transactions on Power Electronics, 25(9), 2420–2432.CrossRefGoogle Scholar
  37. 37.
    Majumder, R., Chaudhuri, B., Ghosh, A., Majumder, R., Ledwich, G., & Zare, F. (2010). Improvement of stability and load sharing in an autonomous microgrid using supplementary droop control loop. IEEE Transactions on Power Apparatus and Systems, 25(2), 796–808.CrossRefGoogle Scholar
  38. 38.
    Delghavi, M. B., & Yazdani, A. (2011). An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids. IEEE Transactions on Power Delivery, 26(3), 1764–1773.CrossRefGoogle Scholar
  39. 39.
    Marwali, M. N., Jung, J., & Keyhani, A. (2007). Stability analysis of load sharing control for distributed generation systems. IEEE Transactions on Energy Conversion, 22(3), 737–745.CrossRefGoogle Scholar
  40. 40.
    Herrera, L., Inoa, E., Guo, F., Wang, J., & Tang, H. (2014). Small-signal modeling and networked control of a PHEV charging facility. IEEE Transactions on Industry Applications, 50(2), 1121–1130.CrossRefGoogle Scholar
  41. 41.
    Hemdan, N., & Kurrat, M. (2008). Distributed generation location and capacity effect on voltage stability of distribution networks. 2008 Annual IEEE Student Paper Conference (Vol. 25, no. c, pp. 1–5).Google Scholar
  42. 42.
    Hedayati, H., Nabaviniaki, S. A., & Akbarimajd, A. (2006). A new method for placement of DG inits in distribution networks. 2006 I.E. PES Power Systems Conference and Exposition (Vol. 23, no. 3, pp. 1904–1909).Google Scholar
  43. 43.
    Al Abri, R. S., El-Saadany, E. F., & Atwa, Y. M. (2013). Optimal placement and sizing method to improve the voltage stability margin in a distribution system using distributed generation. IEEE Transactions on Power Apparatus and Systems, 28(1), 326–334.CrossRefGoogle Scholar
  44. 44.
    Aman, M. M., Jasmon, G. B., Mokhlis, H., & Bakar, A. H. A. (2012). Optimal placement and sizing of a DG based on a new power stability index and line losses. International Journal of Electrical Power & Energy Systems, 43(1), 1296–1304.CrossRefGoogle Scholar
  45. 45.
    Tamimi, B., Canizares, C., & Bhattacharya, K. (2013). System stability impact of large-scale and distributed solar photovoltaic generation: The case of Ontario, Canada. IEEE Transactions on Sustainable Energy, 4(3), 680–688.CrossRefGoogle Scholar
  46. 46.
    Salehi, V., Mohamed, A., Mazloomzadeh, A., & Mohammed, O. A. (2012). Laboratory-based smart power system, part II: Control, monitoring, and protection. IEEE Transactions on Smart Grid, 3(3), 1405–1417.CrossRefGoogle Scholar
  47. 47.
    Shahidehpour, M., & Khodayar, M. (2013). Cutting campus energy costs with hierarchical control: The economical and reliable operation of a microgrid. IEEE Electrification Magazine, 1(1), 40–56.CrossRefGoogle Scholar
  48. 48.
    Hatziargyriou, N. (2014). Microgrids: Architectures and control. New York: Wiley.Google Scholar
  49. 49.
    Shi, D., Sharma, R., & Yanzhu, Y. (2013). Adaptive control of distributed generation for microgrid islanding. Innovative Smart Grid Technologies Europe (ISGT EUROPE), 2013 4th IEEE/PES (pp. 1–5).Google Scholar
  50. 50.
    De Din, E., Lipari, G., Angioni, A., Ponci, F., & Monti, A. (2017). Effect of the reporting rate of synchrophasor measurements for distributed secondary control of AC microgrid. Measurement and Networking (M&N), 2017 I.E. International Workshop (pp. 1–6).Google Scholar
  51. 51.
    Raju, P., & Jain, T. (2014). Wide area measurements based centralized controller to stabilize an inverter fed islanded microgrid. Power India International Conference (PIICON), 2014 6th IEEE (pp. 1–6).Google Scholar
  52. 52.
    Guerrero, J. M., Garcia de Vicuña, L., Matas, J., Castilla, M., & Miret, J. (2005). Output impedancedesign of parallel-connected UPS inverters with wireless load-sharing control. IEEE Transactions on Industrial Electronics, 52(4), 1126–1135.CrossRefGoogle Scholar
  53. 53.
    Matas, J., Castilla, M., García de Vicuña, L., Miret, J., & Vasquez, J. C. (2010). Virtual impedance loop for droop-controlled single-phase parallel inverters using a second-order general-integrator scheme. IEEE Transactions on Power Electronics, 25(12), 2993–3002.CrossRefGoogle Scholar
  54. 54.
    He, J., Li, Y. W., Guerrero, J. M., Blaabjerg, F., & Vasquez, J. C. (2013). An islanding microgrid power sharing approach using enhanced virtual impedance control scheme. IEEE Transactions on Power Electronics, 28(11), 5272–5282.CrossRefGoogle Scholar
  55. 55.
    Wang, X., Li, Y. W., Blaabjerg, F., & Loh, P. C. (2015). Virtual-impedance-based control for voltage-source and current-source converters. IEEE Transactions on Power Electronics, 30(12), 7019–7037.CrossRefGoogle Scholar
  56. 56.
    D’Arco, D., & Suul, J. A. (2015). A synchronization controller for grid reconnection of islanded virtual synchronous machines. 2015 I.E. 6th International Symposium on Power Electronics for Distributed Generation Systems (PEDG) (pp. 1–8).Google Scholar
  57. 57.
    Liu, J., Miura, Y., & Ise, T. (2016). Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators. IEEE Transactions on Power Electronics, 31(5), 3600–3611.CrossRefGoogle Scholar
  58. 58.
    D’Arco, S., & Suul, J. A. (2014). Equivalence of virtual synchronous machines and frequency-droops for converter-based microgrids. IEEE Transactions on Smart Grid, 5(1), 394–395.CrossRefGoogle Scholar
  59. 59.
    D’Arco, S. & Suul, J. A. (2013). Virtual synchronous machines—Classification of implementations and analysis of equivalence to droop controllers for microgrids. 2013 I.E. Grenoble Conference (pp. 1–7).Google Scholar
  60. 60.
    Vandoorn, T. L., De Kooning, J. D. M., Meersman, B., & Vandevelde, L. (2013). Review of primary control strategies for islanded microgrids with power-electronic interfaces. Renewable and Sustainable Energy Reviews, 19, 613–628.CrossRefGoogle Scholar
  61. 61.
    Kasem Alaboudy, A. H., Zeineldin, H. H., & Kirtley, J. (2012). Microgrid stability characterization subsequent to fault-triggered islanding incidents. IEEE Transactions on Power Delivery, 27(2), 658–669.CrossRefGoogle Scholar
  62. 62.
    Tsikalakis, A. G., & Hatziargyriou, N. D. (2011). Centralized control for optimizing microgrids operation. 2011 I.E. Power and Energy Society General Meeting (Vol. 23, no. 1, pp. 1–8).Google Scholar
  63. 63.
    Guerrero, J. M., Vasquez, J. C., Matas, J., García de Vicuña, L., & Castilla, M. (2011). Hierarchical control of droop-controlled AC and DC microgrids-a general approach toward standardization. IEEE Transactions on Industrial Electronics, 58(1), 158–172.CrossRefGoogle Scholar
  64. 64.
    Minchala-Avila, L. I., Garza-Castañón, L. E., Vargas-Martínez, A., & Zhang, Y. (2015). A review of optimal control techniques applied to the energy management and control of microgrids. Procedia Computer Science, 52, 780–787.CrossRefGoogle Scholar
  65. 65.
    Schiffer, J., Seel, T., Raisch, J., & Sezi, T. (2016). Voltage stability and reactive power sharing in inverter-based microgrids with consensus-based distributed voltage control. IEEE Transactions on Control Systems Technology, 24(1), 96–109.CrossRefGoogle Scholar
  66. 66.
    Simpson-Porco, J. W., Shafiee, Q., Dorfler, F., Vasquez, J. C., Guerrero, J. M., & Bullo, F. (2015). Secondary frequency and voltage control of islanded microgrids via distributed averaging. IEEE Transactions on Industrial Electronics, 62(11), 7025–7038.CrossRefGoogle Scholar
  67. 67.
    Yazdanian, M., & Mehrizi-Sani, A. (2014). Distributed control techniques in microgrids. IEEE Transactions on Smart Grid, 5(6), 2901–2909.CrossRefGoogle Scholar
  68. 68.
    Xin, H., Zhao, R., Zhang, L., Wang, Z., Wong, K. P., & Wei, W. (2016). A decentralized hierarchical control structure and self-optimizing control strategy for F-P type DGs in islanded microgrids. IEEE Transactions on Smart Grid, 7(1), 3–5.CrossRefGoogle Scholar
  69. 69.
    Xin, H., Zhang, L., Wang, Z., Gan, D., & Wong, K. P. (2015). Control of island AC microgrids using a fully distributed approach. IEEE Transactions on Smart Grid, 6(2), 943–945.CrossRefGoogle Scholar
  70. 70.
    Castilla, M., Camacho, A., Marti, P., Velasco, M., & Ghahderijani, M. M. (2018). Impact of clock drifts on communication-free secondary control schemes for inverter-based islanded microgrids. IEEE Transactions on Industrial Electronics, 65(6), 4739–4749.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Javier Solano
    • 1
  • Juan M. Rey
    • 1
    Email author
  • Juan D. Bastidas-Rodríguez
    • 1
  • Andrés I. Hernández
    • 2
  1. 1.Universidad Industrial de Santander (UIS)BucaramangaColombia
  2. 2.Universidad Antonio NariñoBogotáColombia

Personalised recommendations