Electrical Power Systems: Evolution from Traditional Configuration to Distributed Generation and Microgrids

  • Luiz F. N. Delboni
  • Diogo Marujo
  • Pedro P. Balestrassi
  • Denisson Queiroz Oliveira


Microgrids can be understood as a complete electrical power system in all characteristics which are inherent to them but on a tiny scale. Although small scaled, they are endowed with high operational and constitutive sophistication enabling them to operate independently, sometimes connected to the distribution system and other times, appropriately, as an isolated system. The paradigm of central control does not exist anymore in this operational philosophy. Thanks to the high quantity and quality of information received from the bulk system summed to the decentralized operation, microgrids can locally provide a higher level of reliability than that provided by the whole system. This chapter gives an overview of electrical power systems evolution stating its current situation with regard to its own function, economic aspects, and environment relationship.


Power System Evolution Microgrids 


  1. 1.
    Stoft, S. (2002). Power systems economics: Designing markets for electricity. New York: IEEE Press.CrossRefGoogle Scholar
  2. 2.
    Joskow, P. L. (1989). Regulatory failure, regulatory reform and structural change in the electric power industry. Brookings Papers on Economic Activity: Microeconomics (pp. 125–199).Google Scholar
  3. 3.
    Kidokoro, K. (1996). Price-based and cost-based regulations for a monopoly with quality choice. Discussion Paper, CSIS – University of Tokyo. [Online].
  4. 4.
    Damsgaard, N. (2003). Deregulation and regulation of electricity markets. PhD Dissertation, The Economic Research Institute, Stockholm School of Economics, EFI.Google Scholar
  5. 5.
    Abhyankar, A. R., & Khaparde, S. A. (2002). Introduction to deregulation in power industry, report by Indian Institute of Technology, Mumbai.Google Scholar
  6. 6.
    Shahidehpour, M., Yamin, H., & Li, Z. (2002). Market operations in electric power systems. New York: John Wiley & Sons.CrossRefGoogle Scholar
  7. 7.
    Hirsh, R., & Sovacool, B. (2006). Technological systems and momentum change: american electric utilities, restructuring, and distributed generation technologies. Spring: Journal of Technology Studies.Google Scholar
  8. 8.
    Machowski, J., Bialek, J. W., & Bumby, J. R. (1997). Power system dynamics and stability. New York: John Wiley & Sons.Google Scholar
  9. 9.
    Hingorani, N. G., & Gyugyi, L. (2000). Understanding FACTS – concepts and technology of flexible AC transmission systems. New York: John Wiley & Sons.Google Scholar
  10. 10.
    Asare, P., Diez, T., Galli, A., O’Neill-Carillo E., Robertson, J., & Zhao, R. (1994). An overview of flexible AC transmission systems. ECE technical reports, Purdue University.Google Scholar
  11. 11.
    de Andrade, L., & de Leão, T. P. (2012). A brief history of direct current in electrical power systems. IEEE HINSTELCON – History of Electro-Technology Conference (pp. 1–6).Google Scholar
  12. 12.
    Kim, C. K., Sood, V. K., Jang, S. J. L., & Lee, S. J. (2009). HVDC transmission: Power conversion applications in power systems. New York: John Wiley & Sons.CrossRefGoogle Scholar
  13. 13.
    Bahrman, M. P. (2006). Overview of HVDC transmission. IEEE Power Systems Conference and Exposition (pp. 18–23).Google Scholar
  14. 14.
    Siemens. (2014). High voltage direct current transmission – proven technology for power exchange. Siemens AG Power Transmission and Distribution High Voltage Division [Online].
  15. 15.
    Hau, E., & von Renoward, H. (2013). Wind turbines: Fundamentals, technologies, applications, economics. Berlin: Springer Vieweg.CrossRefGoogle Scholar
  16. 16.
    Fortmann, J. (2015). Modeling of wind turbines with doubly fed generator system. Dordrecht: Springer Vieweg.CrossRefGoogle Scholar
  17. 17.
    GWEC. (2014). Global Wind Energy Outlook – 2014. Global Wind Energy Council. [Online].
  18. 18.
    Masson, G., Orlandi, S., & Rekinger, M. (2004). Global market outlook for photovoltaics 2014–2018. EPIA.Google Scholar
  19. 19.
    Basulado, M., Feroldi, D., & Outbib, R. (2012). PEM fuel cells with bio-ethanol processor systems. London: Springer.CrossRefGoogle Scholar
  20. 20.
    Zhang, J. (2008). PEM fuel cell electrocatalysts and catalyst layers: Fundamentals and applications. London: Springer.CrossRefGoogle Scholar
  21. 21.
    Sammes, W. (2006). Fuel cell technology: Reaching towards commercialization. London: Springer.CrossRefGoogle Scholar
  22. 22.
    E4tech – Strategic Thinking in Sustainable Energy. (2014). The fuel cell industry review – 2014. E4tech [Online].
  23. 23.
    Yeleti, S., & Fu, Y. (2010). Impacts of energy storage on future power systems. IEEE North American Power Symposium (pp. 1–7).Google Scholar
  24. 24.
    Dobakashari, A. S., Azizi, S., & Ranjbar, A. M. (2011). Control of micro grids: Aspects and prospects. IEEE International Conference on Networking, Sensing and Control (pp. 38–43).Google Scholar
  25. 25.
    Mariam, L., Basu, M., & Colon, M. F. (2012). A review of existing microgrids architectures. IEEE Power and Energy Society General Meeting (pp. 1–7).Google Scholar
  26. 26.
    Ustun, T. S., Kahn, R. H., Hadbah, A., & Kalam, A. (2013). An adaptative microgrid protection scheme based on a wide area smartgrid communication network. IEEE Latin America Conference on Communications (pp. 1–5).Google Scholar
  27. 27.
    Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks (vol. 6). IET Renewable Energy Series. Institution of Engineering and Technology.Google Scholar
  28. 28.
    Falcão, D. M. (2009). Smart grids and microgrids: The future is already present. VIII Simpase Conference Proceedings (in Portuguese).Google Scholar
  29. 29.
    Lasseter, R. (2002). Microgrids. IEEE Power Engineering Society Winter Meeting Conference Proceedings (pp. 305–308).Google Scholar
  30. 30.
    Guerrero, J. M., Vasquez, J. C., Matas, J., Castilla, M., & de Vicuna, L. G. (2009). Control strategy for flexible microgrid based on parallel line-interactive UPS systems. IEEE Transactions on Industrial Electronics, 56(3), 726–736.CrossRefGoogle Scholar
  31. 31.
    Olivares, D. E., Mehrizi-Sani, A., Etemadi, A. H., Canizares, C. A., Iravani, R., Kazerani, M., Hajimiragha, A. H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., Jimenez-Estevez, G. A., & Hatziargyriou, N. D. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 1905–1919.CrossRefGoogle Scholar
  32. 32.
    Lopes, J. A. P., Moreira, C. L., & Madureira, A. G. (2006). Defining control strategies for microgrids islanded operation. IEEE Transactions on Power Systems, 21(2), 916–924.CrossRefGoogle Scholar
  33. 33.
    Hatziargyriou, N. (2014). Microgrids architectures and control. New York: John Wiley & Sons.Google Scholar
  34. 34.
    Justo, J. J., Mwasilu, F., Lee, J., & Jung, J. W. (2013). AC-microgrids versus DC-microgrids with distributed energy resources: A review. Renewable and Sustainable Energy Reviews, 24, 387–405.CrossRefGoogle Scholar
  35. 35.
    Shah, K., Chen, P., Schwab, A., Shenai, K., Gouin-Davis, S., & Downey, L. (2012). Smart efficient solar DC micro-grid. IEEE Energytech Conference Proceedings.Google Scholar
  36. 36.
    Liu, X., Wang, P., & Loh, P. C. (2010). A hybrid AC/DC micro-grid. IPEC Conference Proceedings.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Luiz F. N. Delboni
    • 1
  • Diogo Marujo
    • 2
  • Pedro P. Balestrassi
    • 3
  • Denisson Queiroz Oliveira
    • 4
  1. 1.Institute of Electrical Systems and Energy, Federal University of ItajubáItajubáBrazil
  2. 2.Electrical Engineering DepartmentFederal University of Technology of ParanáMedianeiraBrazil
  3. 3.Institute of Industrial Engineering, Federal University of ItajubáItajubáBrazil
  4. 4.Federal University of MaranhãoMaranhãoBrazil

Personalised recommendations