Advertisement

Reversible Pushdown Transducers

  • Bruno Guillon
  • Martin Kutrib
  • Andreas Malcher
  • Luca Prigioniero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11088)

Abstract

Deterministic pushdown transducers are studied with respect to their ability to compute reversible transductions, that is, to transform inputs into outputs in a reversible way. This means that the transducers are also backward deterministic and thus are able to uniquely step the computation back and forth. The families of transductions computed are classified with regard to four types of length-preserving transductions as well as to the property of working reversibly. It turns out that accurate to one case separating witness transductions can be provided. For the remaining case it is possible to establish the equivalence of both families by proving that stationary moves can always be removed in length-preserving reversible pushdown transductions.

References

  1. 1.
    Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling, vol. I: Parsing. Prentice-Hall Inc., Englewood Cliffs (1972)Google Scholar
  2. 2.
    Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bennett, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bensch, S., Björklund, J., Kutrib, M.: Deterministic stack transducers. Int. J. Found. Comput. Sci. 28, 583–602 (2017)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Berstel, J.: Transductions and Context-Free Languages. Teubner, Stuttgart (1979)CrossRefGoogle Scholar
  6. 6.
    Dartois, L., Fournier, P., Jecker, I., Lhote, N.: On reversible transducers. In: ICALP 2017, LIPIcs, vol. 80, pp. 113:1–113:12. Schloss Dagstuhl (2017)Google Scholar
  7. 7.
    Holzer, M., Jakobi, S., Kutrib, M.: Minimal reversible deterministic finite automata. Int. J. Found. Comput. Sci. 29, 251–270 (2018)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Ibarra, O.H., Yen, H.: On the containment and equivalence problems for two-way transducers. Theor. Comput. Sci. 429, 155–163 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Igarashi, Y.: A pumping lemma for real-time deterministic context-free languages. Theor. Comput. Sci. 36, 89–97 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kondacs, A., Watrous, J.: On the power of quantum finite state automata. In: FOCS 1997, pp. 66–75. IEEE Computer Society (1997)Google Scholar
  11. 11.
    Kutrib, M., Malcher, A.: Reversible pushdown automata. J. Comput. Syst. Sci. 78, 1814–1827 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kutrib, M., Malcher, A.: One-dimensional cellular automaton transducers. Fund. Inform. 126, 201–224 (2013)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Kutrib, M., Malcher, A., Wendlandt, M.: Reversible queue automata. Fund. Inform. 148, 341–368 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kutrib, M., Malcher, A., Wendlandt, M.: Transducing reversibly with finite state machines. In: Carayol, A., Nicaud, C. (eds.) CIAA 2017. LNCS, vol. 10329, pp. 151–162. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60134-2_13CrossRefzbMATHGoogle Scholar
  15. 15.
    Lavado, G.J., Pighizzini, G., Prigioniero, L.: Minimal and reduced reversible automata. J. Autom. Lang. Comb. 22, 145–168 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lavado, G.J., Prigioniero, L.: Concise representations of reversible automata. In: Pighizzini, G., Câmpeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp. 238–249. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60252-3_19CrossRefzbMATHGoogle Scholar
  17. 17.
    Lecerf, Y.: Logique mathématique: Machines de Turing réversible. C. R. Séances Acad. Sci. 257, 2597–2600 (1963)MathSciNetGoogle Scholar
  18. 18.
    Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992).  https://doi.org/10.1007/BFb0023844CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Bruno Guillon
    • 1
  • Martin Kutrib
    • 2
  • Andreas Malcher
    • 2
  • Luca Prigioniero
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di MilanoMilanoItaly
  2. 2.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations