Advertisement

Interestingness of Traces in Declarative Process Mining: The Janus LTLp\(_f\) Approach

  • Alessio Cecconi
  • Claudio Di Ciccio
  • Giuseppe De Giacomo
  • Jan Mendling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11080)

Abstract

Declarative process mining is the set of techniques aimed at extracting behavioural constraints from event logs. These constraints are inherently of a reactive nature, in that their activation restricts the occurrence of other activities. In this way, they are prone to the principle of ex falso quod libet: they can be satisfied even when not activated. As a consequence, constraints can be mined that are hardly interesting to users or even potentially misleading. In this paper, we build on the observation that users typically read and write temporal constraints as if-statements with an explicit indication of the activation condition. Our approach is called Janus, because it permits the specification and verification of reactive constraints that, upon activation, look forward into the future and backwards into the past of a trace. Reactive constraints are expressed using Linear-time Temporal Logic with Past on Finite Traces (LTLp\(_f\)). To mine them out of event logs, we devise a time bi-directional valuation technique based on triplets of automata operating in an on-line fashion. Our solution proves efficient, being at most quadratic w.r.t. trace length, and effective in recognising interestingness of discovered constraints.

Keywords

Process mining Declarative processes Temporal logics Separation theorem Automata theory 

Notes

Acknowledgements

The work of Alessio Cecconi, Claudio Di Ciccio, and Jan Mendling has been funded by the Austrian FFG grant 861213 (CitySPIN) and from the EU H2020 programme under MSCA-RISE agreement 645751 (RISE_BPM). Giuseppe De Giacomo has been partially supported by the Sapienza project “Immersive Cognitive Environments”.

References

  1. 1.
    Adamo, J.: Data Mining for Association Rules and Sequential Patterns - Sequential and Parallel Algorithms. Springer, New York (2001).  https://doi.org/10.1007/978-1-4613-0085-4CrossRefzbMATHGoogle Scholar
  2. 2.
    De Giacomo, G., De Masellis, R., Montali, M.: Reasoning on LTL on finite traces: insensitivity to infiniteness. In: AAAI, pp. 1027–1033 (2014)Google Scholar
  3. 3.
    De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI, pp. 854–860. Association for Computing Machinery (2013)Google Scholar
  4. 4.
    Di Ciccio, C., Bernardi, M.L., Cimitile, M., Maggi, F.M.: Generating event logs through the simulation of declare models. In: Barjis, J., Pergl, R., Babkin, E. (eds.) EOMAS 2015. LNBIP, vol. 231, pp. 20–36. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24626-0_2CrossRefGoogle Scholar
  5. 5.
    Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)CrossRefGoogle Scholar
  6. 6.
    Di Ciccio, C., Mecella, M.: On the discovery of declarative control flows for artful processes. ACM Trans. Manag. Inf. Syst. (TMIS) 5(4), 24 (2015)Google Scholar
  7. 7.
    Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: ICSE, pp. 411–420. IEEE (1999)Google Scholar
  8. 8.
    Gabbay, D.: The declarative past and imperative future. In: Banieqbal, B., Barringer, H., Pnueli, A. (eds.) Temporal Logic in Specification. LNCS, vol. 398, pp. 409–448. Springer, Heidelberg (1989).  https://doi.org/10.1007/3-540-51803-7_36CrossRefGoogle Scholar
  9. 9.
    Gastin, P., Oddoux, D.: LTL with past and two-way very-weak alternating automata. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 439–448. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45138-9_38CrossRefGoogle Scholar
  10. 10.
    Henriksen, J.G., Jensen, J., Jørgensen, M., Klarlund, N., Paige, R., Rauhe, T., Sandholm, A.: Mona: monadic second-order logic in practice. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995).  https://doi.org/10.1007/3-540-60630-0_5CrossRefGoogle Scholar
  11. 11.
    Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Declarative modelling and safe distribution of healthcare workflows. In: Liu, Z., Wassyng, A. (eds.) FHIES 2011. LNCS, vol. 7151, pp. 39–56. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32355-3_3CrossRefGoogle Scholar
  12. 12.
    Hodkinson, I.M., Reynolds, M.: Separation-past, present, and future. In: We Will Show Them!, vol. 2, pp. 117–142 (2005)Google Scholar
  13. 13.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Pearson/Addison Wesley, Boston (2007)Google Scholar
  14. 14.
    Kupferman, O., Vardi, M.Y.: Vacuity detection in temporal model checking. Int. J. Softw. Tools Technol. Transf. 4(2), 224–233 (2003)CrossRefGoogle Scholar
  15. 15.
    de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: An alignment-based framework to check the conformance of declarative process models and to preprocess event-log data. Inf. Syst. 47, 258–277 (2015)CrossRefGoogle Scholar
  16. 16.
    Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985).  https://doi.org/10.1007/3-540-15648-8_16CrossRefzbMATHGoogle Scholar
  17. 17.
    Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process compliance using compliance rule graphs. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011. LNCS, vol. 7044, pp. 82–99. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25109-2_7CrossRefGoogle Scholar
  18. 18.
    Maggi, F.M., Bose, R.P.J.C., van der Aalst, W.M.P.: Efficient discovery of understandable declarative process models from event logs. In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 270–285. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31095-9_18CrossRefGoogle Scholar
  19. 19.
    Maggi, F.M., Di Ciccio, C., Di Francescomarino, C., Kala, T.: Parallel algorithms for the automated discovery of declarative process models. Inf. Syst. 74, 136–152 (2018)CrossRefGoogle Scholar
  20. 20.
    Maggi, F.M., Montali, M., Di Ciccio, C., Mendling, J.: Semantical vacuity detection in declarative process mining. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 158–175. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_10CrossRefGoogle Scholar
  21. 21.
    Mannhardt, F., Blinde, D.: Analyzing the trajectories of patients with sepsis using process mining. In: RADAR+ EMISA, vol. 1859, pp. 72–80 (2017)Google Scholar
  22. 22.
    Markey, N.: Past is for free: on the complexity of verifying linear temporal properties with past. Electr. Notes Theor. Comput. Sci. 68(2), 87–104 (2002)CrossRefGoogle Scholar
  23. 23.
    Pesic, M.: Constraint-based workflow management systems: shifting control to users (2008)Google Scholar
  24. 24.
    Ramakrishna, Y.S., Moser, L.E., Dillon, L.K., Melliar-Smith, P.M., Kutty, G.: An automata-theoretic decision procedure for propositional temporal logic with since and until. Fundam. Inform. 17(3), 271–282 (1992)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Reynolds, M.: The complexity of temporal logic over the reals. Ann. Pure Appl. Log. 161(8), 1063–1096 (2010)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS, pp. 322–331. IEEE Computer Society (1986)Google Scholar
  27. 27.
    Zhu, S., Tabajara, L.M., Li, J., Pu, G., Vardi, M.Y.: Symbolic LTLf synthesis. In: IJCAI, pp. 1362–1369 (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Vienna University of Economics and BusinessViennaAustria
  2. 2.Sapienza University of RomeRomeItaly

Personalised recommendations