Process Forecasting: Towards Proactive Business Process Management

  • Rouven PollEmail author
  • Artem Polyvyanyy
  • Michael Rosemann
  • Maximilian Röglinger
  • Lea Rupprecht
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11080)


The digital economy is highly volatile and uncertain. Ever-changing customer needs and technical progress increase the pressure on organizations to continuously improve and innovate their business processes. The ability to anticipate incremental and radical process changes required in the future is a critical success factor. However, organizations often fail to forecast future business process designs and process performance. One reason is that Business Process Management (BPM) is dominated by reactive methods (e.g., lean management, traditional process monitoring), whereas there are only a few future-oriented approaches (e.g., process simulation, predictive process monitoring). This paper supports the shift towards proactive BPM by coining the notion of process forecasting – an umbrella concept for future-oriented BPM methods and techniques. We motivate the need for process forecasting by eliciting various types of process forecasting from BPM use cases and create a first understanding of its scope by providing a definition, a reference process, showing the steps to be followed in process forecasting initiatives, and a positioning against related BPM sub-areas. The definition and reference process are based on a structured literature review.


Process forecasting Proactive business process management Predictive business process management 


  1. 1.
    Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.: Process flexibility: a survey of contemporary approaches. In: Dietz, J.L.G., Albani, A., Barjis, J. (eds.) CIAO!/EOMAS -2008. LNBIP, vol. 10, pp. 16–30. Springer, Heidelberg (2008). Scholar
  2. 2.
    Krumeich, J., Werth, D., Loos, P.: Enhancing organizational performance through event-based process predictions. In: Proceedings of the 21st Americas Conference on Information Systems (2015)Google Scholar
  3. 3.
    Verenich, I., Dumas, M., La Rosa, M., Maggi, F.M., Di Francescomarino, C.: Minimizing overprocessing waste in business processes via predictive activity ordering. In: Nurcan, S., Soffer, P., Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 186–202. Springer, Cham (2016). Scholar
  4. 4.
    Leveling, J., Edelbrock, M., Otto, B.: Big data analytics for supply chain management. In: IEEE International Conference on Industrial Engineering and Engineering Management (2014)Google Scholar
  5. 5.
    Selcuk, S.: Predictive maintenance, its implementation and latest trends. J. Eng. Manuf. 231, 1670–1679 (2017)CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W.M.P.: Business process management: a comprehensive survey. ISRN Softw. Eng. 2013, Article ID 507984, 1–37 (2013). Scholar
  7. 7.
    Vom Brocke, J., Simons, A., Niehaves, B., Reimer, K., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: ECIS, pp. 2206–2217 (2009)Google Scholar
  8. 8.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., et al. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Cham (2014). Scholar
  9. 9.
    Conforti, R., De Leoni, M., La Rosa, M., Van Der Aalst, W.M.P., Ter Hofstede, A.H.M.: A recommendation system for predicting risks across multiple business process instances. DSS 69, 1–19 (2015)Google Scholar
  10. 10.
    Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for predicting business process performances. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 287–304. Springer, Heidelberg (2012). Scholar
  11. 11.
    Clarivate Analytics: Web of Science Databases. Accessed 17 Mar 2018
  12. 12.
    Heizer, J., Render, B., Munson, C.: Principles of Operations Management: Sustainability and Supply Chain Management. Pearson Education, London (2016)Google Scholar
  13. 13.
    Reid, R.D., Sanders, N.R.: Operations Management: An Integrated Approach. Wiley, Hoboken (2010)Google Scholar
  14. 14.
    Folino, F., Guarascio, M., Pontieri, L.: A prediction framework for proactively monitoring aggregate process-performance indicators. In: IEEE International Enterprise Distributed Object Computing Conference, pp. 128–133 (2015)Google Scholar
  15. 15.
    Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)CrossRefGoogle Scholar
  16. 16.
    Di Francescomarino, C., Ghidini, C., Maggi, F.M., Petrucci, G., Yeshchenko, A.: An eye into the future: leveraging a-priori knowledge in predictive business process monitoring. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445, pp. 252–268. Springer, Cham (2017). Scholar
  17. 17.
    Metzger, A., Franklin, R., Engel, Y.: Predictive monitoring of heterogeneous service-oriented business networks: the transport and logistics case. In: SRII Global Conference (2012)Google Scholar
  18. 18.
    Rosemann, M., Recker, J.C.: Context-aware process design: exploring the extrinsic drivers for process flexibility. In: CAiSE 2006, pp. 149–158 (2006)Google Scholar
  19. 19.
    Heinrich, B., Klier, M., Zimmermann, S.: Automated planning of process models: design of a novel approach to construct exclusive choices. DSS 78, 1–14 (2015)Google Scholar
  20. 20.
    Childe, S.J., Maull, R.S., Bennett, J.: Frameworks for understanding business process re-engineering. Int. J. Oper. Prod. Manag. 14, 22–34 (1994)CrossRefGoogle Scholar
  21. 21.
    Sousa, R., Amorim, M., Rabinovich, E., Sodero, A.C.: Customer use of virtual channels in multichannel services: does type of activity matter? Decis. Sci. 46, 623–657 (2015)CrossRefGoogle Scholar
  22. 22.
    del-Río-Ortega, A., Resinas, M., Ruiz-Cortés, A.: Defining process performance indicators: an ontological approach. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 555–572. Springer, Heidelberg (2010). Scholar
  23. 23.
    Rosemann, M., Recker, J.C., Flender, C.: Contextualization of business processes. Int. J. Bus. Process Integr. Manag. 3, 47–60 (2008)CrossRefGoogle Scholar
  24. 24.
    De Leoni, M., Van Der Aalst, W.M.P., Dees, M.: A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Inf. Syst. 56, 235–257 (2016)CrossRefGoogle Scholar
  25. 25.
    Polyvyanyy, A., Ouyang, C., Barros, A., van der Aalst, W.M.P.: Process querying: enabling business intelligence through query-based process analytics. DSS 100, 41–56 (2017)Google Scholar
  26. 26.
    Roeglinger, M., Seyfried, J., Stelzl, S., Muehlen, M.: Cognitive computing: what’s in for business process management? An exploration of use case ideas. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 419–428. Springer, Cham (2018). Scholar
  27. 27.
    Metzger, A., et al.: Comparing and combining predictive business process monitoring techniques. IEEE Trans. Syst. Man Cybern. Syst. 45, 276–290 (2015)CrossRefGoogle Scholar
  28. 28.
    Jorgensen, H., Carlsen, S.: Emergent workflow: planning and performance of process instances. In: Workflow Management (1999)Google Scholar
  29. 29.
    Castellanos, M., Alves De Medeiros, A.K., Mendling, J., Weber, B., Weijters, A.J.M.M.: Business process intelligence. In: Handbook of Research on Business Process Modeling, pp. 456–480 (2009)Google Scholar
  30. 30.
    van der Aalst, W.M.P.: Process Mining: Discovery. Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). Scholar
  31. 31.
    Jansen-Vullers, M., Netjes, M.: Business process simulation - a tool survey. In: Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools (2006)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Rouven Poll
    • 1
    Email author
  • Artem Polyvyanyy
    • 2
  • Michael Rosemann
    • 3
  • Maximilian Röglinger
    • 4
  • Lea Rupprecht
    • 1
  1. 1.FIM Research CenterUniversity of AugsburgAugsburgGermany
  2. 2.The University of MelbourneParkvilleAustralia
  3. 3.Queensland University of TechnologyBrisbaneAustralia
  4. 4.FIM Research CenterUniversity of BayreuthBayreuthGermany

Personalised recommendations