Advertisement

Who Is Behind the Model? Classifying Modelers Based on Pragmatic Model Features

  • Andrea Burattin
  • Pnina Soffer
  • Dirk Fahland
  • Jan Mendling
  • Hajo A. Reijers
  • Irene Vanderfeesten
  • Matthias Weidlich
  • Barbara Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11080)

Abstract

Process modeling tools typically aid end users in generic, non-personalized ways. However, it is well conceivable that different types of end users may profit from different types of modeling support. In this paper, we propose an approach based on machine learning that is able to classify modelers regarding their expertise while they are creating a process model. To do so, it takes into account pragmatic features of the model under development. The proposed approach is fully automatic, unobtrusive, tool independent, and based on objective measures. An evaluation based on two data sets resulted in a prediction performance of around 90%. Our results further show that all features can be efficiently calculated, which makes the approach applicable to online settings like adaptive modeling environments. In this way, this work contributes to improving the performance of process modelers.

Keywords

Process modeling Classification of modelers Model layout 

Notes

Acknowledgements

This research was funded by the Austrian Science Fund (FWF): P26140–N15 and P26609N15.

References

  1. 1.
    Burton-Jones, A., Meso, P.: The effects of decomposition quality and multiple forms of information on novices’ understanding of a domain from a conceptual model. J. AIS 9(12), 748–802 (2008)Google Scholar
  2. 2.
    Fettke, P.: How conceptual modeling is used. Commun. AIS (CAIS) 25, 571–592 (2009)Google Scholar
  3. 3.
    Recker, J., Safrudin, N., Rosemann, M.: How novices design business processes. Inf. Syst. 37(6), 557–573 (2012)CrossRefGoogle Scholar
  4. 4.
    Soffer, P., Kaner, M., Wand, Y.: Towards understanding the process of process modeling: theoretical and empirical considerations. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 357–369. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-28108-2_35CrossRefGoogle Scholar
  5. 5.
    Wickens, C.D., Hollands, J.G.: Engineering Psychology and Human Performance, 3rd edn. Pearson, London (1999)Google Scholar
  6. 6.
    Figl, K.: Comprehension of procedural visual business process models a literature review. Bus. Inf. Syst. Eng. 59, 41–67 (2017)CrossRefGoogle Scholar
  7. 7.
    Koschmider, A., Reijers, H.A.: Improving the process of process modelling by the use of domain process patterns. Enterp. IS 9(1), 29–57 (2015)CrossRefGoogle Scholar
  8. 8.
    Koschmider, A., Hornung, T., Oberweis, A.: Recommendation-based editor for business process modeling. Data Knowl. Eng. 70(6), 483–503 (2011)CrossRefGoogle Scholar
  9. 9.
    Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support features - enhancing flexibility in process-aware information systems. Data Knowl. Eng. 66(3), 438–466 (2008)CrossRefGoogle Scholar
  10. 10.
    Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 4–19. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85758-7_4CrossRefGoogle Scholar
  11. 11.
    Claes, J., Vanderfeesten, I.T.P., Gailly, F., Grefen, P., Poels, G.: The structured process modeling method (SPMM) what is the best way for me to construct a process model? Decis. Support Syst. 100, 57–76 (2017)CrossRefGoogle Scholar
  12. 12.
    Claes, J., Vanderfeesten, I., Pinggera, J., Reijers, H.A., Weber, B., Poels, G.: Visualizing the Process of process modeling with PPMCharts. In: La Rosa, M., Soffer, P. (eds.) BPM 2012. LNBIP, vol. 132, pp. 744–755. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36285-9_75CrossRefGoogle Scholar
  13. 13.
    Pinggera, J., et al.: Styles in business process modeling: an exploration and a model. Softw. Syst. Model. 14, 1055–1080 (2013)CrossRefGoogle Scholar
  14. 14.
    Krogstie, J.: Quality of models. In: Krogstie, J. (ed.) Model-Based Development and Evolution of Information Systems, pp. 205–247. Springer, London (2012).  https://doi.org/10.1007/978-1-4471-2936-3_4CrossRefGoogle Scholar
  15. 15.
    Mendling, J., Recker, J.C., Reijers, H., Leopold, H.: An empirical review of the connection between model viewer characteristics and the comprehension of conceptual process models. Inf. Syst. Front., 1–25 (2018)Google Scholar
  16. 16.
    Larkin, J., McDermott, J., Simon, D.P., Simon, H.A.: Expert and novice performance in solving physics problems. Science 208(4450), 1335–1342 (1980)CrossRefGoogle Scholar
  17. 17.
    Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of business process models. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum. 41(3), 449–462 (2011)CrossRefGoogle Scholar
  18. 18.
    Petre, M.: Why looking isn’t always seeing: readership skills and graphical programming. Commun. ACM 38(6), 33–44 (1995)CrossRefGoogle Scholar
  19. 19.
    Batra, D., Davis, J.G.: Conceptual data modelling in database design: similarities and differences between expert and novice designers. Int. J. Man Mach. Stud. 37(1), 83–101 (1992)CrossRefGoogle Scholar
  20. 20.
    Narasimha, B., Leung, F.S.: Assisting novice analysts in developing quality conceptual models with UML. Commun. ACM 49(7), 108–112 (2006)CrossRefGoogle Scholar
  21. 21.
    Jawaheer, G., Weller, P., Kostkova, P.: Modeling user preferences in recommender systems: a classification framework for explicit and implicit user feedback. ACM Trans. Interact. Intell. Syst. 4(2) (2014). Article no. 8Google Scholar
  22. 22.
    Riedl, R., Léger, P.-M.: Fundamentals of NeuroIS-Information Systems and the Brain. SNPBE. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-45091-8CrossRefGoogle Scholar
  23. 23.
    Crk, I., Kluthe, T., Stefik, A.: Understanding programming expertise: an empirical study of phasic brain wave changes. ACM Trans. Comput.-Hum. Interact. 23(1), 2:1–2:29 (2016)Google Scholar
  24. 24.
    Pinggera, J.: The process of process modeling. Ph.D. thesis, University of Innsbruck (2014)Google Scholar
  25. 25.
    Martini, M., Pinggera, J., Neurauter, M., Sachse, P., Furtner, M.R., Weber, B.: The impact of working memory and the process of process modelling on model quality: investigating experienced versus inexperienced modellers. Sci. Rep. 6 (2016). Article no. 25561Google Scholar
  26. 26.
    Aggarwal, C.C.: Data Mining. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-14142-8CrossRefzbMATHGoogle Scholar
  27. 27.
    Baker, R.: Big Data and Education. Columbia University, New York (2015)Google Scholar
  28. 28.
    Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines (7PMG). Inf. Softw. Technol. 52(2), 127–136 (2010)CrossRefGoogle Scholar
  29. 29.
    Polyvyanyy, A.: Structuring process models. Ph.D. thesis, University of Potsdam (2012)Google Scholar
  30. 30.
    Haisjackl, C., Soffer, P., Lim, S.Y., Weber, B.: How do humans inspect BPMN models: an exploratory study. Softw. Syst. Model. 17, 655–673 (2016)CrossRefGoogle Scholar
  31. 31.
    Bernstein, V., Soffer, P.: Identifying and quantifying visual layout features of business process models. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) CAISE 2015. LNBIP, vol. 214, pp. 200–213. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19237-6_13CrossRefGoogle Scholar
  32. 32.
    Gschwind, T., Pinggera, J., Zugal, S., Reijers, H.A., Weber, B.: A linear time layout algorithm for business process models. JVLC 25(2), 117–132 (2014)Google Scholar
  33. 33.
    Figl, K., Strembeck, M.: On the importance of flow direction in business process models. In: Proceedings of ICSOFT-EA, pp. 132–136 (2014)Google Scholar
  34. 34.
    Burattin, A., Bernstein, V., Neurauter, M., Soffer, P., Weber, B.: Detection and quantification of flow consistency in business process models. SoSyM 17(2), 633–654 (2017)Google Scholar
  35. 35.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York City (1997)zbMATHGoogle Scholar
  36. 36.
    Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Netw. 4(2), 251–257 (1991)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Huang, G.B.: Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 14(2), 274–281 (2003)CrossRefGoogle Scholar
  38. 38.
    Hagan, M., Demuth, H., Beale, M., De Jesús, O.: Neural Network Design (2014). OklahomaGoogle Scholar
  39. 39.
    Pinggera, J., Zugal, S., Weber, B.: Investigating the process of process modeling with cheetah experimental platform. In: Proceedings of the ER-POIS, pp. 13–15 (2010)Google Scholar
  40. 40.
    Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, 1st edn. Cambridge University Press, Cambridge (2008)CrossRefGoogle Scholar
  41. 41.
    Niknafs, A., Berry, D.: The impact of domain knowledge on the effectiveness of requirements engineering activities. Empir. Softw. Eng. 22(1), 80–133 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andrea Burattin
    • 1
  • Pnina Soffer
    • 2
  • Dirk Fahland
    • 3
  • Jan Mendling
    • 4
  • Hajo A. Reijers
    • 3
    • 5
  • Irene Vanderfeesten
    • 3
  • Matthias Weidlich
    • 6
  • Barbara Weber
    • 1
    • 7
  1. 1.Technical University of DenmarkKgs. LyngbyDenmark
  2. 2.University of HaifaHaifaIsrael
  3. 3.Eindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Vienna University of Economics and BusinessViennaAustria
  5. 5.Vrije Universiteit AmsterdamAmsterdamThe Netherlands
  6. 6.Humboldt-UniversityBerlinGermany
  7. 7.University of InnsbruckInnsbruckAustria

Personalised recommendations