Advertisement

Online Conformance Checking Using Behavioural Patterns

  • Andrea BurattinEmail author
  • Sebastiaan J. van Zelst
  • Abel Armas-Cervantes
  • Boudewijn F. van Dongen
  • Josep Carmona
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11080)

Abstract

New and compelling regulations (e.g., the GDPR in Europe) impose tremendous pressure on organizations, in order to adhere to standard procedures, processes, and practices. The field of conformance checking aims to quantify the extent to which the execution of a process, captured within recorded corresponding event data, conforms to a given reference process model. Existing techniques assume a post-mortem scenario, i.e. they detect deviations based on complete executions of the process. This limits their applicability in an online setting. In such context, we aim to detect deviations online (i.e., in-vivo), in order to provide recovery possibilities before the execution of a process instance is completed. Also, current techniques assume cases to start from the initial stage of the process, whereas this assumption is not feasible in online settings. In this paper, we present a generic framework for online conformance checking, in which the underlying process is represented in terms of behavioural patterns and no assumption on the starting point of cases is needed. We instantiate the framework on the basis of Petri nets, with an accompanying new unfolding technique. The approach is implemented in the process mining tool ProM, and evaluated by means of several experiments including a stress-test and a comparison with a similar technique.

Keywords

Conformance checking Online processing Behavioural patterns Stream processing Petri nets Unfoldings 

Notes

Acknowledgements

This work has been partially supported by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  2. 2.
    Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis, Technische Universiteit Eindhoven (2014)Google Scholar
  3. 3.
    vanden Broucke, S.K.L.M., Munoz-Gama, J., Carmona, J., Baesens, B., Vanthienen, J.: Event-based real-time decomposed conformance analysis. In: Meersman, R., et al. (eds.) OTM 2014. LNCS, vol. 8841, pp. 345–363. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45563-0_20CrossRefGoogle Scholar
  4. 4.
    Burattin, A., Carmona, J.: A framework for online conformance checking. In: Teniente, E., Weidlich, M. (eds.) BPM 2017. LNBIP, vol. 308, pp. 165–177. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74030-0_12CrossRefGoogle Scholar
  5. 5.
    Burattin, A., Cimitile, M., Maggi, F.M., Sperduti, A.: Online discovery of declarative process models from event streams. IEEE TSC 8(6), 833–846 (2015)Google Scholar
  6. 6.
    Burattin, A., Sperduti, A., van der Aalst, W.M.: Control-flow discovery from event streams. In: Proceedings of the IEEE CEC, pp. 2420–2427 (2014)Google Scholar
  7. 7.
    Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 50(12), 1281–1294 (2008)CrossRefGoogle Scholar
  8. 8.
    van Dongen, B., Carmona, J., Chatain, T., Taymouri, F.: Aligning modeled and observed behavior: a compromise between computation complexity and quality. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 94–109. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_7CrossRefGoogle Scholar
  9. 9.
    Jouck, T., Depaire, B.: PTandLogGenerator: a generator for artificial event data. In: Proceedings of the BPM Demo Track, pp. 23–27 (2016)Google Scholar
  10. 10.
    Khomenko, V., Koutny, M., Vogler, W.: Canonical prefixes of Petri net unfoldings. Acta Informatica 40(2), 95–118 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ly, L.T., Maggi, F.M., Montali, M., Rinderle-Ma, S., van der Aalst, W.M.P.: Compliance monitoring in business processes: functionalities, application, and tool-support. Inf. Syst. 54, 209–234 (2015)CrossRefGoogle Scholar
  12. 12.
    Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    McMillan, K.L., Probst, D.K.: A technique of state space search based on unfolding. Formal Methods Syst. Des. 6(1), 45–65 (1995)CrossRefGoogle Scholar
  14. 14.
    Rozinat, A., van der Aalst, W.M.P.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33(1), 64–95 (2008)CrossRefGoogle Scholar
  15. 15.
    Smirnov, S., Weidlich, M., Mendling, J.: Business process model abstraction based on behavioral profiles. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 1–16. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-17358-5_1CrossRefGoogle Scholar
  16. 16.
    Song, M.: Organizational mining in business process management. Ph.D. thesis, Pohang University of Science and Technology, Pohang, South Korea (2006)Google Scholar
  17. 17.
    Taymouri, F., Carmona, J.: A recursive paradigm for aligning observed behavior of large structured process models. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 197–214. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_12CrossRefGoogle Scholar
  18. 18.
    Taymouri, F., Carmona, J.: Model and event log reductions to boost the computation of alignments. In: Ceravolo, P., Guetl, C., Rinderle-Ma, S. (eds.) SIMPDA 2016. LNBIP, vol. 307, pp. 1–21. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74161-1_1CrossRefGoogle Scholar
  19. 19.
    Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-17722-4_5CrossRefGoogle Scholar
  20. 20.
    Weidlich, M., Polyvyanyy, A., Desai, N., Mendling, J., Weske, M.: Process compliance analysis based on behavioural profiles. Inf. Syst. 36(7), 1009–1025 (2011)CrossRefGoogle Scholar
  21. 21.
    van Zelst, S.J., Bolt, A., van Dongen, B.F.: Tuning alignment computation: an experimental evaluation. In: Proceedings of ATAED, pp. 6–20 (2017)Google Scholar
  22. 22.
    van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.: Online conformance checking: relating event streams to process models using prefix-alignments. Int. J. Data Sci. Anal. (2017).  https://doi.org/10.1007/s41060-017-0078-6

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Andrea Burattin
    • 1
    Email author
  • Sebastiaan J. van Zelst
    • 2
  • Abel Armas-Cervantes
    • 3
  • Boudewijn F. van Dongen
    • 2
  • Josep Carmona
    • 4
  1. 1.Technical University of DenmarkKgs. LyngbyDenmark
  2. 2.Eindhoven University of TechnologyEindhovenThe Netherlands
  3. 3.The University of MelbourneMelbourneAustralia
  4. 4.Universitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations