Advertisement

Abstract-and-Compare: A Family of Scalable Precision Measures for Automated Process Discovery

  • Adriano AugustoEmail author
  • Abel Armas-Cervantes
  • Raffaele Conforti
  • Marlon Dumas
  • Marcello La Rosa
  • Daniel Reissner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11080)

Abstract

Automated process discovery techniques allow us to extract business process models from event logs. The quality of models discovered by these techniques can be assessed with respect to various criteria related to simplicity and accuracy. One of these criteria, namely precision, captures the extent to which the behavior allowed by a process model is observed in the log. While several measures of precision have been proposed, a recent study has shown that none of them fulfills a set of five axioms that capture intuitive properties behind the concept of precision. In addition, existing precision measures suffer from scalability issues when applied to models discovered from real-life event logs. This paper presents a family of precision measures based on the idea of comparing the k-th order Markovian abstraction of a process model against that of an event log. We demonstrate that this family of measures fulfils the aforementioned axioms for a suitably chosen value of k. We also empirically show that representative exemplars of this family of measures outperform a commonly used precision measure in terms of scalability and that they closely approximate two precision measures that have been proposed as possible ground truths.

Notes

Acknowledgements

This research is partly funded by the Australian Research Council (DP180102839) and the Estonian Research Council (IUT20-55).

References

  1. 1.
    Adriansyah, A., Munoz-Gama, J., Carmona, J., van Dongen, B., van der Aalst, W.: Measuring precision of modeled behavior. IseB 13(1), 37–67 (2015)CrossRefGoogle Scholar
  2. 2.
    Augusto, A., Conforti, R., Dumas, M., La Rosa, M.: Automated discovery of structured process models from event logs: the discover-and-structure approach. DKE (2017)Google Scholar
  3. 3.
    Augusto, A., et al.: Automated discovery of process models from event logs: review and benchmark. TKDE (2018, to appear)Google Scholar
  4. 4.
    Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Polyvyanyy, A.: Split miner: automated discovery of accurate and simple business process models from event logs. KAIS (2018)Google Scholar
  5. 5.
    Augusto, A., Conforti, R., Dumas, M., La Rosa, M.: Split miner: discovering accurate and simple business process models from event logs. In: IEEE ICDM. IEEE (2017)Google Scholar
  6. 6.
    Conforti, R., La Rosa, M., ter Hofstede, A.: Filtering out infrequent behavior from business process event logs. IEEE TKDE 29(2), 300–314 (2017)Google Scholar
  7. 7.
    De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A robust F-measure for evaluating discovered process models. In: IEEE Symposium on CIDM. IEEE (2011)Google Scholar
  8. 8.
    Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models by clustering log traces. IEEE TKDE 18(8), 1010–1027 (2006)Google Scholar
  9. 9.
    Kuhn, H.W.: The Hungarian method for the assignment problem. NRL 2(1–2), 83–97 (1955)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38697-8_17CrossRefGoogle Scholar
  11. 11.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 66–78. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06257-0_6CrossRefGoogle Scholar
  12. 12.
    Leemans, S., Fahland, D., van der Aalst, W.: Scalable process discovery and conformance checking. Softw. Syst. Model. (2016)Google Scholar
  13. 13.
    Muñoz-Gama, J., Carmona, J.: A fresh look at precision in process conformance. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 211–226. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15618-2_16CrossRefGoogle Scholar
  14. 14.
    Rozinat, A., van der Aalst, W.: Conformance checking of processes based on monitoring real behavior. ISJ 33(1), 64–95 (2008)Google Scholar
  15. 15.
    Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.: The imprecisions of precision measures in process mining. Inf. Process. Lett. 135, 1–8 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    van Dongen, B.F., Carmona, J., Chatain, T.: A unified approach for measuring precision and generalization based on anti-alignments. In: La Rosa, M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 39–56. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45348-4_3CrossRefGoogle Scholar
  17. 17.
    vanden Broucke, S., De Weerdt, J.: Fodina: a robust and flexible heuristic process discovery. DSS 100, 109–118 (2017)Google Scholar
  18. 18.
    Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: CIDM. IEEE (2011)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Adriano Augusto
    • 1
    • 2
    Email author
  • Abel Armas-Cervantes
    • 2
  • Raffaele Conforti
    • 2
  • Marlon Dumas
    • 1
  • Marcello La Rosa
    • 2
  • Daniel Reissner
    • 2
  1. 1.University of TartuTartuEstonia
  2. 2.University of MelbourneMelbourneAustralia

Personalised recommendations