Textbook of Autoinflammation pp 89-109 | Cite as
Inflammasomes and Autoinflammation
Abstract
Inflammasomes are large intracellular multi-protein polymeric complexes comprised of sensors, adaptor proteins and caspases. As innate immune sensors capable of recognizing and rapidly responding to pathogen and metabolic danger signals, inflammasomes act as key modulators of initial immune responses. This chapter focuses on the known inflammasome complexes, how they assemble into a molecular platform for caspase-1 activation and ultimately lead to the release of pro-inflammatory cytokines in the context of the innate immune response. A brief discussion of the role for the inflammasomes in disease is included.
Keywords
Inflammasome NLR Interleukin-1 Interleukin 18 Pyrin Caspase-1 ASCAbbreviations
- AIM2
Absent in melanoma 2
- ALR
AIM2-like receptor
- ANA
Antinuclear antibody
- ASC
Apoptosis related speck-like protein containing CARD
- ATP
Adenosine triphosphate
- Bid
BH3 interacting-domain death agonist
- CAPS
Cryopyrin-associated periodic syndromes
- CARD
Caspase activation and recruitment domain
- CRP
C-reactive protein
- DAMP
Damage associated molecular patterns
- FADD
Fas-associated death domain
- FCAS
Familial cold autoinflammatory syndrome
- FIIND
Function to find domain
- FMF
Familial Mediterranean fever
- GTP
Guanosine-5′-triphosphate
- GWAS
Genome-wide association study
- ICE
Interleukin-1β converting enzyme
- IFN
Interferon
- IGIF
Interferon-gamma inducing factor
- IL
Interleukin
- LDL
Low density lipoprotein
- LPS
Lipopolysaccharide
- LRRs
Leucine-rich-repeats
- MAS
Macrophage-activation syndrome
- MDP
Muramyl-dipeptide
- MSU
Monosodium urate
- NAIP
NLR family, apoptosis inhibitory protein
- NASH
Nonalcoholic steatohepatitis
- NBS
Nucleotide binding site
- NEK
Nima-related kinase
- NF-ĸB
Nuclear factor–ĸB
- NLR
NOD-like receptor
- NLRC
NLR family CARD domain-containing protein
- NOD
Nucleotide-binding oligomerization domain
- NOMID
Neonatal-onset multisystem inflammatory disease
- PAMP
Pathogen-associated molecular patterns
- PRR
Pattern-recognition receptors
- PYD
Pyrin domain
- ROS
Reactive oxygen species
- SNP
Single-nucleotide polymorphism
- TLR
Toll-like receptor
References
- 1.Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10(2):417–26.CrossRefGoogle Scholar
- 2.Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 2002;277(24):21119–22.PubMedCrossRefGoogle Scholar
- 3.Tschopp J, Martinon F, Burns K. NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol. 2003;4(2):95–104.PubMedCrossRefGoogle Scholar
- 4.Ting JP, Lovering RC, Alnemri ES, et al. The NLR gene family: a standard nomenclature. Immunity. 2008;28(3):285–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13(6):397–411.PubMedCrossRefGoogle Scholar
- 6.Chae JJ, Komarow HD, Cheng J, et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell. 2003;11(3):591–604.PubMedCrossRefGoogle Scholar
- 7.Wang L, Manji GA, Grenier JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277(33):29874–80.PubMedCrossRefPubMedCentralGoogle Scholar
- 8.Martinon F, Tschopp J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell. 2004;117(5):561–74.PubMedCrossRefGoogle Scholar
- 9.Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–25.PubMedCrossRefPubMedCentralGoogle Scholar
- 10.Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003;171(11):6154–63.PubMedCrossRefGoogle Scholar
- 11.Broderick L, De Nardo D, Franklin BS, Hoffman HM, Latz E. The inflammasomes and autoinflammatory syndromes. Annu Rev Pathol. 2015;10:395–424.PubMedCrossRefGoogle Scholar
- 12.Bertin J, DiStefano PS. The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ. 2000;7(12):1273–4.PubMedCrossRefGoogle Scholar
- 13.Martinon F, Hofmann K, Tschopp J. The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol. 2001;11(4):R118–20.PubMedCrossRefGoogle Scholar
- 14.Richards N, Schaner P, Diaz A, et al. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J Biol Chem. 2001;276(42):39320–9.PubMedCrossRefGoogle Scholar
- 15.Fairbrother WJ, Gordon NC, Humke EW, et al. The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci. 2001;10(9):1911–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Liu T, Rojas A, Ye Y, Godzik A. Homology modeling provides insights into the binding mode of the PAAD/DAPIN/pyrin domain, a fourth member of the CARD/DD/DED domain family. Protein Sci. 2003;12(9):1872–81.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Liepinsh E, Barbals R, Dahl E, Sharipo A, Staub E, Otting G. The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition. J Mol Biol. 2003;332(5):1155–63.PubMedCrossRefGoogle Scholar
- 18.Hiller S, Kohl A, Fiorito F, et al. NMR structure of the apoptosis- and inflammation-related NALP1 pyrin domain. Structure. 2003;11(10):1199–205.PubMedCrossRefGoogle Scholar
- 19.Eliezer D. Folding pyrin into the family. Structure. 2003;11(10):1190–1.PubMedCrossRefGoogle Scholar
- 20.Harton JA, Linhoff MW, Zhang J, Ting JP. Cutting edge: CATERPILLER: a large family of mammalian genes containing CARD, pyrin, nucleotide-binding, and leucine-rich repeat domains. J Immunol. 2002;169(8):4088–93.PubMedCrossRefGoogle Scholar
- 21.Gumucio DL, Diaz A, Schaner P, et al. Fire and ICE: the role of pyrin domain-containing proteins in inflammation and apoptosis. Clin Exp Rheumatol. 2002;20(4 Suppl 26):S45–53.PubMedGoogle Scholar
- 22.Manji GA, Wang L, Geddes BJ, et al. PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. J Biol Chem. 2002;277(13):11570–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 23.Dowds TA, Masumoto J, Chen FF, Ogura Y, Inohara N, Nunez G. Regulation of cryopyrin/Pypaf1 signaling by pyrin, the familial Mediterranean fever gene product. Biochem Biophys Res Commun. 2003;302(3):575–80.PubMedCrossRefGoogle Scholar
- 24.Masumoto J, Taniguchi S, Ayukawa K, et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem. 1999;274(48):33835–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156(6):1193–206.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Franklin BS, Bossaller L, De Nardo D, et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat Immunol. 2014;15(8):727–37.PubMedPubMedCentralCrossRefGoogle Scholar
- 27.He WT, Wan H, Hu L, et al. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res. 2015;25(12):1285–98.PubMedPubMedCentralCrossRefGoogle Scholar
- 28.Kayagaki N, Stowe IB, Lee BL, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526(7575):666–71.PubMedCrossRefGoogle Scholar
- 29.Shi J, Zhao Y, Wang K, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526(7575):660–5.PubMedCrossRefGoogle Scholar
- 30.Denes A, Lopez-Castejon G, Brough D. Caspase-1: is IL-1 just the tip of the ICEberg? Cell Death Dis. 2012;3:e338.PubMedPubMedCentralCrossRefGoogle Scholar
- 31.Lamkanfi M, Kanneganti TD, Van Damme P, et al. Targeted peptidecentric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics. 2008;7(12):2350–63.PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Walsh JG, Logue SE, Luthi AU, Martin SJ. Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. J Biol Chem. 2011;286(37):32513–24.PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–6.PubMedCrossRefPubMedCentralGoogle Scholar
- 34.Ghayur T, Banerjee S, Hugunin M, et al. Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 1997;386(6625):619–23.CrossRefGoogle Scholar
- 35.Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Miao EA, Leaf IA, Treuting PM, et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol. 2010;11(12):1136–42.PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Aachoui Y, Sagulenko V, Miao EA, Stacey KJ. Inflammasome-mediated pyroptotic and apoptotic cell death, and defense against infection. Curr Opin Microbiol. 2013;16(3):319–26.PubMedPubMedCentralCrossRefGoogle Scholar
- 38.Stoffels M, Zaal R, Kok N, van der Meer JW, Dinarello CA, Simon A. ATP-induced IL-1beta specific secretion: true under stringent conditions. Front Immunol. 2015;6:54.PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Fernandes-Alnemri T, Wu J, Yu JW, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14(9):1590–604.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Stein R, Kapplusch F, Heymann MC, et al. Enzymatically inactive procaspase 1 stabilizes the ASC pyroptosome and supports pyroptosome spreading during cell division. J Biol Chem. 2016;291(35):18419–29.PubMedPubMedCentralCrossRefGoogle Scholar
- 41.Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M. The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem. 2007;282(50):36321–9.PubMedCrossRefPubMedCentralGoogle Scholar
- 42.Yu J, Nagasu H, Murakami T, et al. Inflammasome activation leads to Caspase-1-dependent mitochondrial damage and block of mitophagy. Proc Natl Acad Sci U S A. 2014;111(43):15514–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.PubMedCrossRefPubMedCentralGoogle Scholar
- 44.Belizario JE, Alves J, Garay-Malpartida M, Occhiucci JM. Coupling caspase cleavage and proteasomal degradation of proteins carrying PEST motif. Curr Protein Pept Sci. 2008;9(3):210–20.PubMedCrossRefGoogle Scholar
- 45.Eldridge MJG, Sanchez-Garrido J, Hoben GF, Goddard PJ, Shenoy AR. The atypical ubiquitin E2 conjugase UBE2L3 is an indirect caspase-1 target and controls IL-1beta secretion by inflammasomes. Cell Rep. 2017;18(5):1285–97.PubMedPubMedCentralCrossRefGoogle Scholar
- 46.Baroja-Mazo A, Martin-Sanchez F, Gomez AI, et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol. 2014;15(8):738–48.PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Kayagaki N, Warming S, Lamkanfi M, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479(7371):117–21.PubMedCrossRefGoogle Scholar
- 48.Knodler LA, Crowley SM, Sham HP, et al. Noncanonical inflammasome activation of caspase-4/caspase-11 mediates epithelial defenses against enteric bacterial pathogens. Cell Host Microbe. 2014;16(2):249–56.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Sollberger G, Strittmatter GE, Kistowska M, French LE, Beer HD. Caspase-4 is required for activation of inflammasomes. J Immunol. 2012;188(4):1992–2000.PubMedCrossRefPubMedCentralGoogle Scholar
- 50.Holzinger D, Kessel C, Omenetti A, Gattorno M. From bench to bedside and back again: translational research in autoinflammation. Nat Rev Rheumatol. 2015;11(10):573–85.PubMedCrossRefPubMedCentralGoogle Scholar
- 51.Finger JN, Lich JD, Dare LC, et al. Autolytic proteolysis within the function to find domain (FIIND) is required for NLRP1 inflammasome activity. J Biol Chem. 2012;287(30):25030–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Bruey JM, Bruey-Sedano N, Luciano F, et al. Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell. 2007;129(1):45–56.PubMedCrossRefPubMedCentralGoogle Scholar
- 53.Faustin B, Lartigue L, Bruey JM, et al. Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell. 2007;25(5):713–24.PubMedCrossRefPubMedCentralGoogle Scholar
- 54.Witola WH, Mui E, Hargrave A, et al. NALP1 influences susceptibility to human congenital toxoplasmosis, proinflammatory cytokine response, and fate of Toxoplasma gondii-infected monocytic cells. Infect Immun. 2011;79(2):756–66.PubMedCrossRefGoogle Scholar
- 55.Chavarria-Smith J, Mitchell PS, Ho AM, Daugherty MD, Vance RE. Functional and evolutionary analyses identify proteolysis as a general mechanism for NLRP1 inflammasome activation. PLoS Pathog. 2016;12(12):e1006052.PubMedPubMedCentralCrossRefGoogle Scholar
- 56.Kummer JA, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem. 2007;55(5):443–52.PubMedCrossRefGoogle Scholar
- 57.Zhong FL, Mamai O, Sborgi L, et al. Germline NLRP1 mutations cause skin inflammatory and cancer susceptibility syndromes via inflammasome activation. Cell. 2016;167(1):187–202.e17.PubMedCrossRefPubMedCentralGoogle Scholar
- 58.Soler VJ, Tran-Viet KN, Galiacy SD, et al. Whole exome sequencing identifies a mutation for a novel form of corneal intraepithelial dyskeratosis. J Med Genet. 2013;50(4):246–54.PubMedPubMedCentralCrossRefGoogle Scholar
- 59.Grandemange S, Sanchez E, Louis-Plence P, et al. A new autoinflammatory and autoimmune syndrome associated with NLRP1 mutations: NAIAD (NLRP1-associated autoinflammation with arthritis and dyskeratosis). Ann Rheum Dis. 2017;76(7):1191–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 60.Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29(3):301–5.PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Hoffman HM, Wanderer AA, Broide DH. Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever. J Allergy Clin Immunol. 2001;108(4):615–20.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Koonin EV, Aravind L. The NACHT family—a new group of predicted NTPases implicated in apoptosis and MHC transcription activation. Trends Biochem Sci. 2000;25(5):223–4.PubMedCrossRefGoogle Scholar
- 63.Feldmann J, Prieur AM, Quartier P, et al. Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet. 2002;71(1):198–203.PubMedPubMedCentralCrossRefGoogle Scholar
- 64.McCall SH, Sahraei M, Young AB, et al. Osteoblasts express NLRP3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res. 2008;23(1):30–40.PubMedCrossRefGoogle Scholar
- 65.Shigeoka AA, Mueller JL, Kambo A, et al. An inflammasome-independent role for epithelial-expressed Nlrp3 in renal ischemia-reperfusion injury. J Immunol. 2010;185(10):6277–85.PubMedPubMedCentralCrossRefGoogle Scholar
- 66.Duncan JA, Bergstralh DT, Wang Y, et al. Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci U S A. 2007;104(19):8041–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 67.Stehlik C, Fiorentino L, Dorfleutner A, et al. The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor kappaB activation pathways. J Exp Med. 2002;196(12):1605–15.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.O’Connor W Jr, Harton JA, Zhu X, Linhoff MW, Ting JP. CIAS1/cryopyrin/PYPAF1/NALP3/CATERPILLER 1.1 is an inducible inflammatory mediator with NF-kappa B suppressive properties. J Immunol. 2003;171(12):6329–33.PubMedCrossRefGoogle Scholar
- 69.Duncan JA, Gao X, Huang MT, et al. Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol. 2009;182(10):6460–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 70.Fujisawa A, Kambe N, Saito M, et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. 2007;109(7):2903–11.PubMedGoogle Scholar
- 71.Willingham SB, Allen IC, Bergstralh DT, et al. NLRP3 (NALP3, Cryopyrin) facilitates in vivo caspase-1 activation, necrosis, and HMGB1 release via inflammasome-dependent and -independent pathways. J Immunol. 2009;183(3):2008–15.PubMedPubMedCentralCrossRefGoogle Scholar
- 72.Willingham SB, Bergstralh DT, O’Connor W, et al. Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe. 2007;2(3):147–59.PubMedPubMedCentralCrossRefGoogle Scholar
- 73.Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 2012;287(43):36617–22.PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Kawashima A, Karasawa T, Tago K, et al. ARIH2 ubiquitinates NLRP3 and negatively regulates NLRP3 inflammasome activation in macrophages. J Immunol. 2017;199(10):3614–22.PubMedCrossRefGoogle Scholar
- 75.Hernandez-Cuellar E, Tsuchiya K, Hara H, et al. Cutting edge: nitric oxide inhibits the NLRP3 inflammasome. J Immunol. 2012;189(11):5113–7.PubMedCrossRefGoogle Scholar
- 76.Song N, Liu ZS, Xue W, et al. NLRP3 phosphorylation is an essential priming event for inflammasome activation. Mol Cell. 2017;68(1):185–97.e6.PubMedCrossRefGoogle Scholar
- 77.Stutz A, Kolbe CC, Stahl R, et al. NLRP3 inflammasome assembly is regulated by phosphorylation of the pyrin domain. J Exp Med. 2017;214(6):1725–36.PubMedPubMedCentralCrossRefGoogle Scholar
- 78.He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41(12):1012–21.PubMedPubMedCentralCrossRefGoogle Scholar
- 79.Barbera-Cremades M, Baroja-Mazo A, Gomez AI, Machado F, Di Virgilio F, Pelegrin P. P2X7 receptor-stimulation causes fever via PGE2 and IL-1beta release. FASEB J. 2012;26(7):2951–62.PubMedCrossRefGoogle Scholar
- 80.He Y, Zeng MY, Yang D, Motro B, Nunez G. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature. 2016;530(7590):354–7.PubMedPubMedCentralCrossRefGoogle Scholar
- 81.Shi H, Wang Y, Li X, et al. NLRP3 activation and mitosis are mutually exclusive events coordinated by NEK7, a new inflammasome component. Nat Immunol. 2016;17(3):250–8.PubMedCrossRefGoogle Scholar
- 82.Gurung P, Anand PK, Malireddi RK, et al. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. J Immunol. 2014;192(4):1835–46.PubMedPubMedCentralCrossRefGoogle Scholar
- 83.Inohara N, Ogura Y, Nunez G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol. 2002;5(1):76–80.PubMedCrossRefGoogle Scholar
- 84.Chamaillard M, Girardin SE, Viala J, Philpott DJ. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. Cell Microbiol. 2003;5(9):581–92.PubMedCrossRefGoogle Scholar
- 85.Girardin SE, Boneca IG, Viala J, et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem. 2003;278(11):8869–72.PubMedCrossRefGoogle Scholar
- 86.Martinon F, Agostini L, Meylan E, Tschopp J. Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol. 2004;14(21):1929–34.PubMedCrossRefGoogle Scholar
- 87.Hoffman HM, Brydges SD. Genetic and molecular basis of inflammasome-mediated disease. J Biol Chem. 2011;286(13):10889–96.PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Hoffman HM, Wright FA, Broide DH, Wanderer AA, Kolodner RD. Identification of a locus on chromosome 1q44 for familial cold urticaria. Am J Hum Genet. 2000;66(5):1693–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 89.Muckle TJ, Wellsm. Urticaria, deafness, and amyloidosis: a new heredo-familial syndrome. Q J Med. 1962;31:235–48.PubMedGoogle Scholar
- 90.Hashkes PJ, Lovell DJ. Recognition of infantile-onset multisystem inflammatory disease as a unique entity. J Pediatr. 1997;130(4):513–5.PubMedGoogle Scholar
- 91.de Koning HD, van Gijn ME, Stoffels M, et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. 2015;135(2):561–4.PubMedCrossRefGoogle Scholar
- 92.De Nardo D, Latz E. NLRP3 inflammasomes link inflammation and metabolic disease. Trends Immunol. 2011;32(8):373–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 93.Villani AC, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet. 2009;41(1):71–6.PubMedCrossRefGoogle Scholar
- 94.Centola M, Wood G, Frucht DM, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95(10):3223–31.PubMedPubMedCentralGoogle Scholar
- 95.Diaz A, Hu C, Kastner DL, et al. Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. Arthritis Rheum. 2004;50(11):3679–89.PubMedCrossRefPubMedCentralGoogle Scholar
- 96.Matzner Y, Abedat S, Shapiro E, et al. Expression of the familial Mediterranean fever gene and activity of the C5a inhibitor in human primary fibroblast cultures. Blood. 2000;96(2):727–31.PubMedGoogle Scholar
- 97.Papin S, Cazeneuve C, Duquesnoy P, Jeru I, Sahali D, Amselem S. The tumor necrosis factor alpha-dependent activation of the human mediterranean fever (MEFV) promoter is mediated by a synergistic interaction between C/EBP beta and NF kappaB p65. J Biol Chem. 2003;278(49):48839–47.PubMedCrossRefGoogle Scholar
- 98.Masumoto J, Dowds TA, Schaner P, et al. ASC is an activating adaptor for NF-kappa B and caspase-8-dependent apoptosis. Biochem Biophys Res Commun. 2003;303(1):69–73.PubMedCrossRefGoogle Scholar
- 99.Waite AL, Schaner P, Hu C, et al. Pyrin and ASC co-localize to cellular sites that are rich in polymerizing actin. Exp Biol Med (Maywood). 2009;234(1):40–52.CrossRefGoogle Scholar
- 100.Hesker PR, Nguyen M, Kovarova M, Ting JP, Koller BH. Genetic loss of murine pyrin, the Familial Mediterranean Fever protein, increases interleukin-1beta levels. PLoS One. 2012;7(11):e51105.PubMedPubMedCentralCrossRefGoogle Scholar
- 101.Chae JJ, Cho YH, Lee GS, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1beta activation and severe autoinflammation in mice. Immunity. 2011;34(5):755–68.PubMedPubMedCentralCrossRefGoogle Scholar
- 102.Xu H, Yang J, Gao W, et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature. 2014;513(7517):237–41.PubMedCrossRefGoogle Scholar
- 103.Gao W, Yang J, Liu W, Wang Y, Shao F. Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A. 2016;113(33):E4857–66.PubMedPubMedCentralCrossRefGoogle Scholar
- 104.Masters SL, Lagou V, Jeru I, et al. Familial autoinflammation with neutrophilic dermatosis reveals a regulatory mechanism of pyrin activation. Sci Transl Med. 2016;8(332):332ra45.PubMedCrossRefGoogle Scholar
- 105.International_FMF_Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell. 1997;90(4):797–807.CrossRefGoogle Scholar
- 106.Moghaddas F, Llamas R, De Nardo D, et al. A novel Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to Familial Mediterranean Fever. Ann Rheum Dis. 2017;76(12):2085–94.PubMedPubMedCentralCrossRefGoogle Scholar
- 107.Zhao Y, Yang J, Shi J, et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature. 2011;477(7366):596–600.PubMedCrossRefGoogle Scholar
- 108.Miao EA, Alpuche-Aranda CM, Dors M, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol. 2006;7(6):569–75.PubMedCrossRefPubMedCentralGoogle Scholar
- 109.Miao EA, Mao DP, Yudkovsky N, et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci U S A. 2010;107(7):3076–80.PubMedPubMedCentralCrossRefGoogle Scholar
- 110.Qu Y, Misaghi S, Newton K, et al. NLRP3 recruitment by NLRC4 during Salmonella infection. J Exp Med. 2016;213(6):877–85.PubMedPubMedCentralCrossRefGoogle Scholar
- 111.Sutterwala FS, Flavell RA. NLRC4/IPAF: a CARD carrying member of the NLR family. Clin Immunol. 2009;130(1):2–6.PubMedCrossRefGoogle Scholar
- 112.Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46(10):1140–6.PubMedPubMedCentralCrossRefGoogle Scholar
- 113.Volker-Touw CM, de Koning HD, Giltay JC, et al. Erythematous nodes, urticarial rash and arthralgias in a large pedigree with NLRC4-related autoinflammatory disease, expansion of the phenotype. Br J Dermatol. 2017;176(1):244–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 114.Kawasaki Y, Oda H, Ito J, et al. Identification of a high-frequency somatic NLRC4 mutation as a cause of autoinflammation by pluripotent cell-based phenotype dissection. Arthritis Rheumatol. 2017;69(2):447–59.PubMedCrossRefPubMedCentralGoogle Scholar
- 115.Levy M, Shapiro H, Thaiss CA, Elinav E. NLRP6: a multifaceted innate immune sensor. Trends Immunol. 2017;38(4):248–60.PubMedCrossRefGoogle Scholar
- 116.Chen GY, Liu M, Wang F, Bertin J, Nunez G. A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol. 2011;186(12):7187–94.PubMedPubMedCentralCrossRefGoogle Scholar
- 117.Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell. 2011;145(5):745–57.PubMedPubMedCentralCrossRefGoogle Scholar
- 118.Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell. 2014;156(5):1045–59.PubMedPubMedCentralCrossRefGoogle Scholar
- 119.Mehta R, Neupane A, Wang L, Goodman Z, Baranova A, Younossi ZM. Expression of NALPs in adipose and the fibrotic progression of non-alcoholic fatty liver disease in obese subjects. BMC Gastroenterol. 2014;14:208.PubMedPubMedCentralCrossRefGoogle Scholar
- 120.Gieger C, Radhakrishnan A, Cvejic A, et al. New gene functions in megakaryopoiesis and platelet formation. Nature. 2011;480(7376):201–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 121.Glorioso N, Herrera VL, Didishvili T, et al. Sex-specific effects of NLRP6/AVR and ADM loci on susceptibility to essential hypertension in a Sardinian population. PLoS One. 2013;8(10):e77562.PubMedPubMedCentralCrossRefGoogle Scholar
- 122.Okada K, Hirota E, Mizutani Y, et al. Oncogenic role of NALP7 in testicular seminomas. Cancer Sci. 2004;95(12):949–54.PubMedCrossRefGoogle Scholar
- 123.Radian AD, Khare S, Chu LH, Dorfleutner A, Stehlik C. ATP binding by NLRP7 is required for inflammasome activation in response to bacterial lipopeptides. Mol Immunol. 2015;67(2 Pt B):294–302.PubMedPubMedCentralCrossRefGoogle Scholar
- 124.Pinheiro AS, Proell M, Eibl C, Page R, Schwarzenbacher R, Peti W. Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin-pyrin-mediated effector domain signaling in innate immunity. J Biol Chem. 2010;285(35):27402–10.PubMedPubMedCentralCrossRefGoogle Scholar
- 125.Radian AD, de Almeida L, Dorfleutner A, Stehlik C. NLRP7 and related inflammasome activating pattern recognition receptors and their function in host defense and disease. Microbes Infect. 2013;15(8–9):630–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 126.Khare S, Dorfleutner A, Bryan NB, et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012;36(3):464–76.PubMedPubMedCentralCrossRefGoogle Scholar
- 127.Zhou Y, Shah SZ, Yang L, Zhang Z, Zhou X, Zhao D. Virulent Mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages. PLoS One. 2016;11(4):e0152853.PubMedPubMedCentralCrossRefGoogle Scholar
- 128.Murdoch S, Djuric U, Mazhar B, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38(3):300–2.PubMedCrossRefGoogle Scholar
- 129.Messaed C, Akoury E, Djuric U, et al. NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J Biol Chem. 2011;286(50):43313–23.PubMedPubMedCentralCrossRefGoogle Scholar
- 130.Mahadevan S, Wen S, Wan YW, et al. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet. 2014;23(3):706–16.PubMedCrossRefGoogle Scholar
- 131.Soellner L, Begemann M, Degenhardt F, Geipel A, Eggermann T, Mangold E. Maternal heterozygous NLRP7 variant results in recurrent reproductive failure and imprinting disturbances in the offspring. Eur J Hum Genet. 2017;25(8):924–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 132.Fiorentino L, Stehlik C, Oliveira V, Ariza ME, Godzik A, Reed JC. A novel PAAD-containing protein that modulates NF-kappa B induction by cytokines tumor necrosis factor-alpha and interleukin-1beta. J Biol Chem. 2002;277(38):35333–40.PubMedCrossRefPubMedCentralGoogle Scholar
- 133.Williams KL, Taxman DJ, Linhoff MW, Reed W, Ting JP. Cutting edge: monarch-1: a pyrin/nucleotide-binding domain/leucine-rich repeat protein that controls classical and nonclassical MHC class I genes. J Immunol. 2003;170(11):5354–8.PubMedCrossRefPubMedCentralGoogle Scholar
- 134.Pinheiro AS, Eibl C, Ekman-Vural Z, Schwarzenbacher R, Peti W. The NLRP12 pyrin domain: structure, dynamics, and functional insights. J Mol Biol. 2011;413(4):790–803.PubMedPubMedCentralCrossRefGoogle Scholar
- 135.Lich JD, Williams KL, Moore CB, et al. Monarch-1 suppresses non-canonical NF-kappaB activation and p52-dependent chemokine expression in monocytes. J Immunol. 2007;178(3):1256–60.PubMedCrossRefPubMedCentralGoogle Scholar
- 136.Borghini S, Tassi S, Chiesa S, et al. Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation. Arthritis Rheum. 2011;63(3):830–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 137.Jeru I, Duquesnoy P, Fernandes-Alnemri T, et al. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci U S A. 2008;105(5):1614–9.PubMedPubMedCentralCrossRefGoogle Scholar
- 138.Jeru I, Le Borgne G, Cochet E, et al. Identification and functional consequences of a recurrent NLRP12 missense mutation in periodic fever syndromes. Arthritis Rheum. 2011;63(5):1459–64.PubMedCrossRefPubMedCentralGoogle Scholar
- 139.Allen IC, Wilson JE, Schneider M, et al. NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity. 2012;36(5):742–54.PubMedPubMedCentralCrossRefGoogle Scholar
- 140.Chen L, Wilson JE, Koenigsknecht MJ, et al. NLRP12 attenuates colon inflammation by maintaining colonic microbial diversity and promoting protective commensal bacterial growth. Nat Immunol. 2017;18(5):541–51.PubMedPubMedCentralCrossRefGoogle Scholar
- 141.Linz BM, Neely CJ, Kartchner LB, et al. Innate immune cell recovery is positively regulated by NLRP12 during emergency hematopoiesis. J Immunol. 2017;198(6):2426–33.PubMedPubMedCentralCrossRefGoogle Scholar
- 142.Gharagozloo M, Mahvelati TM, Imbeault E, et al. The nod-like receptor, Nlrp12, plays an anti-inflammatory role in experimental autoimmune encephalomyelitis. J Neuroinflammation. 2015;12:198.PubMedPubMedCentralCrossRefGoogle Scholar
- 143.Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458(7237):509–13.PubMedPubMedCentralCrossRefGoogle Scholar
- 144.Hornung V, Ablasser A, Charrel-Dennis M, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458(7237):514–8.PubMedPubMedCentralCrossRefGoogle Scholar
- 145.Zhang W, Cai Y, Xu W, Yin Z, Gao X, Xiong S. AIM2 facilitates the apoptotic DNA-induced systemic lupus erythematosus via arbitrating macrophage functional maturation. J Clin Immunol. 2013;33(5):925–37.PubMedCrossRefGoogle Scholar
- 146.Dombrowski Y, Peric M, Koglin S, et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci Transl Med. 2011;3(82):82ra38.PubMedPubMedCentralCrossRefGoogle Scholar
- 147.Kopfnagel V, Wittmann M, Werfel T. Human keratinocytes express AIM2 and respond to dsDNA with IL-1beta secretion. Exp Dermatol. 2011;20(12):1027–9.PubMedCrossRefGoogle Scholar
- 148.Ting JP, Duncan JA, Lei Y. How the noninflammasome NLRs function in the innate immune system. Science. 2010;327(5963):286–90.PubMedPubMedCentralCrossRefGoogle Scholar