Advertisement

Behçet Disease

  • Ahmet GülEmail author
Chapter

Abstract

Behçet disease, a multifactorial systemic inflammatory disorder of unknown etiology, is characterized by recurrent oral and genital aphthous ulcers, and uveitis as cardinal features, and also other manifestations involving the skin and mucosal tissues, eyes, joints, blood vessels, lungs, central nervous and gastrointestinal systems. Some of its recurrent manifestations overlap with the clinical findings of autoinflammatory disorders. However bilateral posterior or panuveitis with typical features, variable vessel vasculitis with a preference for the venous side, and parenchymal neurologic involvement as subacute brainstem syndrome constitute its distinctive clinical findings. Behçet disease is strongly associated with human leukocyte antigen (HLA)-B*51, and an epistatic interaction between HLA-B*51 and one of the endoplasmic reticulum-associated aminopeptidase 1 (ERAP1) haplotypes implicate the critical role of peptide-HLA complex in the disease pathogenesis. Additional non-HLA genetic variants associated with Behçet disease contribute to the changes in sensitivity to microbial and other environmental triggers resulting in a hyperinflammatory response involving mainly innate immunity, Th1 and Th17 type adaptive response and endothelial activation. Treatment of Behçet disease is empiric, and should be tailored according to the severity of manifestations. Clinical findings and their recurrences can be managed by anti-inflammatory and immunosuppressive drugs, including corticosteroids, colchicine, apremilast, azathioprine, cyclosporine as well as monoclonal anti-tumor necrosis factor agents and interferon α, and when necessary with other targeted biologic treatments.

Keywords

Behçet disease Aphthous ulcer Vasculitis Uveitis Human leukocyte antigen (HLA)-B*51 Endoplasmic reticulum aminopeptidase (ERAP)-1 

Abbreviations

5-ASA

5-Aminosalicylate

ASC

Apoptosis-associated speck-like protein containing CARD

CAPS

Cryopyrin-associated periodic syndrome

CARD

Caspase activation and recruitment domains

ERAP

Endoplasmic reticulum aminopeptidase

FMF

Familial Mediterranean fever

HA20

Haploinsufficiency of A20

HIV

Human immunodeficiency virus

HLA

Human leukocyte antigen

hnRNP

Heterogeneous nuclear ribonucleoprotein

IFN

Interferon

IL

Interleukin

JAK

Janus kinase

MHC

Major histocompatibility complex

MKD

Mevalonate kinase deficiency

NF-M

Neurofilament-medium

NK

Natural killer

NLRP3

Nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3

PAPA

Pyogenic arthritis, pyoderma gangrenosum and acne

STAT

Signal transducer and activator of transcripton

TNF

Tumor necrosis factor

TRAPS

Tumor necrosis factor receptor-associated periodic syndrome

References

  1. 1.
    Gul A. Pathogenesis of Behcet’s disease: autoinflammatory features and beyond. Semin Immunopathol. 2015;37:413–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Jennette JC, Falk RJ, Bacon PA, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65:1–11.PubMedCrossRefGoogle Scholar
  3. 3.
    Alavi A, Sajic D, Cerci FB, Ghazarian D, Rosenbach M, Jorizzo J. Neutrophilic dermatoses: an update. Am J Clin Dermatol. 2014;15:413–23.PubMedCrossRefGoogle Scholar
  4. 4.
    Nelson CA, Stephen S, Ashchyan HJ, James WD, Micheletti RG, Rosenbach M. Neutrophilic dermatoses. Part I. Pathogenesis, Sweet syndrome, neutrophilic eccrine hidradenitis, and Behcet’s disease. J Am Acad Dermatol. 2018;79:987–1006.PubMedCrossRefGoogle Scholar
  5. 5.
    Kastner DL, Aksentijevich I, Goldbach-Mansky R. Autoinflammatory disease reloaded: a clinical perspective. Cell. 2010;140:784–90.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    McGonagle D, McDermott MF. A proposed classification of the immunological diseases. PLoS Med. 2006;3:e297.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Azizlerli G, Kose AA, Sarica R, et al. Prevalence of Behcet’s disease in Istanbul, Turkey. Int J Dermatol. 2003;42:803–6.PubMedCrossRefGoogle Scholar
  8. 8.
    Madanat WY, Alawneh KM, Smadi MM, et al. The prevalence of Behcet’s disease in the north of Jordan: a hospital-based epidemiological survey. Clin Exp Rheumatol. 2017;35(Suppl 108):51–4.PubMedGoogle Scholar
  9. 9.
    Maldini C, Druce K, Basu N, Lavalley MP, Mahr A. Exploring the variability in Behcet’s disease prevalence: a meta-analytical approach. Rheumatology (Oxford). 2018;57:185–95.CrossRefGoogle Scholar
  10. 10.
    Verity DH, Marr JE, Ohno S, Wallace GR, Stanford MR. Behcet’s disease, the Silk Road and HLA-B51: historical and geographical perspectives. Tissue Antigens. 1999;54:213–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Leccese P, Yazici Y, Olivieri I. Behcet’s syndrome in nonendemic regions. Curr Opin Rheumatol. 2017;29:12–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Kural-Seyahi E, Fresko I, Seyahi N, et al. The long-term mortality and morbidity of Behcet syndrome: a 2-decade outcome survey of 387 patients followed at a dedicated center. Medicine (Baltimore). 2003;82:60–76.CrossRefGoogle Scholar
  13. 13.
    Gul A, Inanc M, Ocal L, Aral O, Konice M. Familial aggregation of Behcet’s disease in Turkey. Ann Rheum Dis. 2000;59:622–5.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gul A, Ohno S. HLA-B*51 and Behcet disease. Ocul Immunol Inflamm. 2012;20:37–43.PubMedCrossRefGoogle Scholar
  15. 15.
    Maldini C, Lavalley MP, Cheminant M, de Menthon M, Mahr A. Relationships of HLA-B51 or B5 genotype with Behcet’s disease clinical characteristics: systematic review and meta-analyses of observational studies. Rheumatology (Oxford). 2012;51:887–900.CrossRefGoogle Scholar
  16. 16.
    Kirino Y, Ideguchi H, Takeno M, et al. Continuous evolution of clinical phenotype in 578 Japanese patients with Behcet’s disease: a retrospective observational study. Arthritis Res Ther. 2016;18:217.Google Scholar
  17. 17.
    Kirino Y, Bertsias G, Ishigatsubo Y, et al. Genome-wide association analysis identifies new susceptibility loci for Behcet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2013;45:202–7.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Takeuchi M, Ombrello MJ, Kirino Y, et al. A single endoplasmic reticulum aminopeptidase-1 protein allotype is a strong risk factor for Behcet’s disease in HLA-B*51 carriers. Ann Rheum Dis. 2016;75:2208–11.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Ombrello MJ, Kirino Y, de Bakker PI, Gul A, Kastner DL, Remmers EF. Behcet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci U S A. 2014;111:8867–72.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Remmers EF, Cosan F, Kirino Y, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behcet’s disease. Nat Genet. 2010;42:698–702.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Takeuchi M, Mizuki N, Meguro A, et al. Dense genotyping of immune-related loci implicates host responses to microbial exposure in Behcet’s disease susceptibility. Nat Genet. 2017;49:438–43.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kirino Y, Zhou Q, Ishigatsubo Y, et al. Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behcet disease. Proc Natl Acad Sci U S A. 2013;110:8134–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Hughes T, Ture-Ozdemir F, Alibaz-Oner F, Coit P, Direskeneli H, Sawalha AH. Epigenome-wide scan identifies a treatment-responsive pattern of altered DNA methylation among cytoskeletal remodeling genes in monocytes and CD4+ T cells from patients with Behcet’s disease. Arthritis Rheumatol. 2014;66:1648–58.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    The Behcet’s Disease Research Committee of Japan. Skin hypersensitivity to streptococcal antigens and the induction of systemic symptoms by the antigens in Behcet’s disease—a multicenter study. J Rheumatol. 1989;16:506–11.Google Scholar
  25. 25.
    Isogai E, Ohno S, Kotake S, et al. Chemiluminescence of neutrophils from patients with Behcet’s disease and its correlation with an increased proportion of uncommon serotypes of Streptococcus sanguis in the oral flora. Arch Oral Biol. 1990;35:43–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Lehner T, Lavery E, Smith R, van der Zee R, Mizushima Y, Shinnick T. Association between the 65-kilodalton heat shock protein, Streptococcus sanguis, and the corresponding antibodies in Behcet’s syndrome. Infect Immun. 1991;59:1434–41.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Yoshikawa K, Kotake S, Kubota T, Kimura K, Isogai E, Fujii N. Cloning and sequencing of BeS-1 gene encoding the immunogenic antigen of Streptococcus sanguis KTH-1 isolated from the patients with Behcet’s disease. Zentralbl Bakteriol. 1998;287:449–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Eglin RP, Lehner T, Subak-Sharpe JH. Detection of RNA complementary to herpes-simplex virus in mononuclear cells from patients with Behcet’s syndrome and recurrent oral ulcers. Lancet. 1982;2:1356–61.CrossRefGoogle Scholar
  29. 29.
    Young C, Lehner T, Barnes CG. CD4 and CD8 cell responses to herpes simplex virus in Behcet’s disease. Clin Exp Immunol. 1988;73:6–10.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Hamzaoui K, Ayed K, Slim A, Hamza M, Touraine J. Natural killer cell activity, interferon-gamma and antibodies to herpes viruses in patients with Behcet’s disease. Clin Exp Immunol. 1990;79:28–34.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Kaneko F, Oyama N, Yanagihori H, Isogai E, Yokota K, Oguma K. The role of streptococcal hypersensitivity in the pathogenesis of Behcet’s disease. Eur J Dermatol. 2008;18:489–98.PubMedGoogle Scholar
  32. 32.
    Lule S, Colpak AI, Balci-Peynircioglu B, et al. Behcet disease serum is immunoreactive to neurofilament medium which share common epitopes to bacterial HSP-65, a putative trigger. J Autoimmun. 2017;84:87–96.PubMedCrossRefGoogle Scholar
  33. 33.
    Takeno M, Kariyone A, Yamashita N, et al. Excessive function of peripheral blood neutrophils from patients with Behcet’s disease and from HLA-B51 transgenic mice. Arthritis Rheum. 1995;38:426–33.PubMedCrossRefGoogle Scholar
  34. 34.
    Mege JL, Dilsen N, Sanguedolce V, et al. Overproduction of monocyte derived tumor necrosis factor alpha, interleukin (IL) 6, IL-8 and increased neutrophil superoxide generation in Behcet’s disease. A comparative study with familial Mediterranean fever and healthy subjects. J Rheumatol. 1993;20:1544–9.PubMedGoogle Scholar
  35. 35.
    Guasp P, Barnea E, Gonzalez-Escribano MF, et al. The Behcet’s disease-associated variant of the aminopeptidase ERAP1 shapes a low-affinity HLA-B*51 peptidome by differential subpeptidome processing. J Biol Chem. 2017;292:9680–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    McGonagle D, Aydin SZ, Gul A, Mahr A, Direskeneli H. ‘MHC-I-opathy’-unified concept for spondyloarthritis and Behcet disease. Nat Rev Rheumatol. 2015;11:731–40.PubMedCrossRefGoogle Scholar
  37. 37.
    Takeuchi M, Kastner DL, Remmers EF. The immunogenetics of Behcet’s disease: a comprehensive review. J Autoimmun. 2015;64:137–48.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Tulunay A, Dozmorov MG, Ture-Ozdemir F, et al. Activation of the JAK/STAT pathway in Behcet’s disease. Genes Immun. 2015;16:170–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Puccetti A, Fiore PF, Pelosi A, et al. Gene expression profiling in Behcet’s disease indicates an autoimmune component in the pathogenesis of the disease and opens new avenues for targeted therapy. J Immunol Res. 2018;2018:4246965.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Mumcu G, Ergun T, Inanc N, et al. Oral health is impaired in Behcet’s disease and is associated with disease severity. Rheumatology (Oxford). 2004;43:1028–33.CrossRefGoogle Scholar
  41. 41.
    Seoudi N, Bergmeier LA, Drobniewski F, Paster B, Fortune F. The oral mucosal and salivary microbial community of Behcet’s syndrome and recurrent aphthous stomatitis. J Oral Microbiol. 2015;7:27150.PubMedCrossRefGoogle Scholar
  42. 42.
    Kaneko F, Togashi A, Nomura E, Nakamura K. A new diagnostic way for Behcet’s disease: skin prick with self-saliva. Genet Res Int. 2014;2014:581468.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Pervin K, Childerstone A, Shinnick T, et al. T cell epitope expression of mycobacterial and homologous human 65-kilodalton heat shock protein peptides in short term cell lines from patients with Behcet’s disease. J Immunol. 1993;151:2273–82.PubMedGoogle Scholar
  44. 44.
    Cho SB, Ahn KJ, Kim DH, et al. Identification of HnRNP-A2/B1 as a target antigen of anti-endothelial cell IgA antibody in Behcet’s disease. J Invest Dermatol. 2012;132:601–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Stanford MR, Kasp E, Whiston R, et al. Heat shock protein peptides reactive in patients with Behcet’s disease are uveitogenic in Lewis rats. Clin Exp Immunol. 1994;97:226–31.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Stanford M, Whittall T, Bergmeier LA, et al. Oral tolerization with peptide 336-351 linked to cholera toxin B subunit in preventing relapses of uveitis in Behcet’s disease. Clin Exp Immunol. 2004;137:201–8.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Lee KH, Chung HS, Kim HS, et al. Human alpha-enolase from endothelial cells as a target antigen of anti-endothelial cell antibody in Behcet’s disease. Arthritis Rheum. 2003;48:2025–35.PubMedCrossRefGoogle Scholar
  48. 48.
    de Smet MD, Yamamoto JH, Mochizuki M, et al. Cellular immune responses of patients with uveitis to retinal antigens and their fragments. Am J Ophthalmol. 1990;110:135–42.PubMedCrossRefGoogle Scholar
  49. 49.
    Mor F, Weinberger A, Cohen IR. Identification of alpha-tropomyosin as a target self-antigen in Behcet’s syndrome. Eur J Immunol. 2002;32:356–65.PubMedCrossRefGoogle Scholar
  50. 50.
    Vural B, Demirkan A, Ugurel E, et al. Seroreactivity against PTEN-induced putative kinase 1 (PINK1) in Turkish patients with Behcet’s disease. Clin Exp Rheumatol. 2009;27:S67–72.PubMedGoogle Scholar
  51. 51.
    Becatti M, Emmi G, Silvestri E, et al. Neutrophil activation promotes fibrinogen oxidation and thrombus formation in Behcet disease. Circulation. 2016;133:302–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Khan E, Ambrose NL, Ahnstrom J, et al. A low balance between microparticles expressing tissue factor pathway inhibitor and tissue factor is associated with thrombosis in Behcet’s syndrome. Sci Rep. 2016;6:38104.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Cakir N, Yazici H, Chamberlain MA, et al. Response to intradermal injection of monosodium urate crystals in Behcet’s syndrome. Ann Rheum Dis. 1991;50:634–6.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kim EH, Park MJ, Park S, Lee ES. Increased expression of the NLRP3 inflammasome components in patients with Behcet’s disease. J Inflamm (Lond). 2015;12:41.CrossRefGoogle Scholar
  55. 55.
    Kone-Paut I, Sanchez E, Le Quellec A, Manna R, Touitou I. Autoinflammatory gene mutations in Behcet’s disease. Ann Rheum Dis. 2007;66:832–4.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Aeschlimann FA, Batu ED, Canna SW, et al. A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann Rheum Dis. 2018;77:728–35.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kone-Paut I. Behcet’s disease in children, an overview. Pediatr Rheumatol Online J. 2016;14:10.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Molinari N, Kone Paut I, Manna R, Demaille J, Daures JP, Touitou I. Identification of an autosomal recessive mode of inheritance in paediatric Behcet’s families by segregation analysis. Am J Med Genet A. 2003;122A:115–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Alpsoy E. Behcet’s disease: a comprehensive review with a focus on epidemiology, etiology and clinical features, and management of mucocutaneous lesions. J Dermatol. 2016;43:620–32.PubMedCrossRefGoogle Scholar
  60. 60.
    Tascilar K, Melikoglu M, Ugurlu S, Sut N, Caglar E, Yazici H. Vascular involvement in Behcet’s syndrome: a retrospective analysis of associations and the time course. Rheumatology (Oxford). 2014;53:2018–22.CrossRefGoogle Scholar
  61. 61.
    Akman-Demir G, Serdaroglu P, Tasci B. Clinical patterns of neurological involvement in Behcet’s disease: evaluation of 200 patients. The Neuro-Behcet Study Group. Brain. 1999;122:2171–82.PubMedCrossRefGoogle Scholar
  62. 62.
    Saip S, Akman-Demir G, Siva A. Neuro-Behcet syndrome. Handb Clin Neurol. 2014;121:1703–23.PubMedCrossRefGoogle Scholar
  63. 63.
    Saygin C, Uzunaslan D, Hatemi G, Hamuryudan V. Suicidal ideation among patients with Behcet’s syndrome. Clin Exp Rheumatol. 2015;33:S30–5.PubMedGoogle Scholar
  64. 64.
    Cheon JH, Kim WH. An update on the diagnosis, treatment, and prognosis of intestinal Behcet’s disease. Curr Opin Rheumatol. 2015;27:24–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Hatemi I, Esatoglu SN, Hatemi G, Erzin Y, Yazici H, Celik AF. Characteristics, treatment, and long-term outcome of gastrointestinal involvement in Behcet’s syndrome: a strobe-compliant observational study from a dedicated multidisciplinary center. Medicine (Baltimore). 2016;95:e3348.CrossRefGoogle Scholar
  66. 66.
    Ambrose NL, Haskard DO. Differential diagnosis and management of Behcet syndrome. Nat Rev Rheumatol. 2013;9:79–89.PubMedCrossRefGoogle Scholar
  67. 67.
    Kutlubay Z, Mat CM, Aydin O, et al. Histopathological and clinical evaluation of papulopustular lesions in Behcet’s disease. Clin Exp Rheumatol. 2015;33:S101–6.PubMedGoogle Scholar
  68. 68.
    Sunderkotter CH, Zelger B, Chen KR, et al. Nomenclature of cutaneous vasculitis: dermatologic addendum to the 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheumatol. 2018;70:171–84.PubMedCrossRefGoogle Scholar
  69. 69.
    Kobayashi M, Ito M, Nakagawa A, et al. Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behcet disease. Histopathology. 2000;36:362–71.PubMedCrossRefGoogle Scholar
  70. 70.
    Varol A, Seifert O, Anderson CD. The skin pathergy test: innately useful? Arch Dermatol Res. 2010;302:155–68.PubMedCrossRefGoogle Scholar
  71. 71.
    Dilsen N, Konice M, Aral O, Ocal L, Inanc M, Gul A. Comparative study of the skin pathergy test with blunt and sharp needles in Behcet’s disease: confirmed specificity but decreased sensitivity with sharp needles. Ann Rheum Dis. 1993;52:823–5.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    International Study Group for Behcet’s Disease. Criteria for diagnosis of Behcet’s disease. Lancet. 1990;335:1078–80.Google Scholar
  73. 73.
    International Team for the Revision of the International Criteria for Behcet’s Disease. The International Criteria for Behcet’s Disease (ICBD): a collaborative study of 27 countries on the sensitivity and specificity of the new criteria. J Eur Acad Dermatol Venereol. 2014;28:338–47.CrossRefGoogle Scholar
  74. 74.
    Kone-Paut I, Shahram F, Darce-Bello M, et al. Consensus classification criteria for paediatric Behcet’s disease from a prospective observational cohort: PEDBD. Ann Rheum Dis. 2016;75:958–64.PubMedCrossRefGoogle Scholar
  75. 75.
    Letsinger JA, McCarty MA, Jorizzo JL. Complex aphthosis: a large case series with evaluation algorithm and therapeutic ladder from topicals to thalidomide. J Am Acad Dermatol. 2005;52:500–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Lee SK, Kim BK, Kim TI, Kim WH. Differential diagnosis of intestinal Behcet’s disease and Crohn’s disease by colonoscopic findings. Endoscopy. 2009;41:9–16.PubMedCrossRefGoogle Scholar
  77. 77.
    Lyons JL, Rosenbaum JT. Uveitis associated with inflammatory bowel disease compared with uveitis associated with spondyloarthropathy. Arch Ophthalmol. 1997;115:61–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Tugal-Tutkun I, Gupta V, Cunningham ET. Differential diagnosis of behcet uveitis. Ocul Immunol Inflamm. 2013;21:337–50.PubMedCrossRefGoogle Scholar
  79. 79.
    Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hatemi G, Christensen R, Bang D, et al. 2018 update of the EULAR recommendations for the management of Behcet’s syndrome. Ann Rheum Dis. 2018;77:808–18.PubMedGoogle Scholar
  81. 81.
    Yurdakul S, Mat C, Tuzun Y, et al. A double-blind trial of colchicine in Behcet’s syndrome. Arthritis Rheum. 2001;44:2686–92.PubMedCrossRefGoogle Scholar
  82. 82.
    Hamuryudan V, Mat C, Saip S, et al. Thalidomide in the treatment of the mucocutaneous lesions of the Behcet syndrome. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1998;128:443–50.PubMedCrossRefGoogle Scholar
  83. 83.
    Sharquie KE, Najim RA, Abu-Raghif AR. Dapsone in Behcet’s disease: a double-blind, placebo-controlled, cross-over study. J Dermatol. 2002;29:267–79.PubMedCrossRefGoogle Scholar
  84. 84.
    Hatemi G, Melikoglu M, Tunc R, et al. Apremilast for Behcet’s syndrome—a phase 2, placebo-controlled study. N Engl J Med. 2015;372:1510–8.PubMedCrossRefGoogle Scholar
  85. 85.
    Hatemi HMA, Takeno M, Kim D-Y, et al. Apremilast for Behçet’s syndrome: a phase III randomised, placebo-controlled, double-blind study (RELIEF). Ann Rheum Dis. 2018;77:A91.CrossRefGoogle Scholar
  86. 86.
    Alibaz-Oner F, Karadeniz A, Ylmaz S, et al. Behcet disease with vascular involvement: effects of different therapeutic regimens on the incidence of new relapses. Medicine (Baltimore). 2015;94:e494.CrossRefGoogle Scholar
  87. 87.
    Alibaz-Oner F, Sawalha AH, Direskeneli H. Management of Behcet’s disease. Curr Opin Rheumatol. 2018;30:238–42.PubMedGoogle Scholar
  88. 88.
    Tugal-Tutkun I, Onal S, Altan-Yaycioglu R, Huseyin Altunbas H, Urgancioglu M. Uveitis in Behcet disease: an analysis of 880 patients. Am J Ophthalmol. 2004;138:373–80.PubMedCrossRefGoogle Scholar
  89. 89.
    Senusi AA, Ola D, Mather J, Mather J, Fortune F. Behcet’s syndrome and health-related quality of life: influence of symptoms, lifestyle and employment status. Clin Exp Rheumatol. 2017;35(Suppl 108):43–50.PubMedGoogle Scholar
  90. 90.
    Pehlivan M, Kurtuncu M, Tuzun E, et al. The comparison of socio-economic conditions and personal hygiene habits of neuro-Behcet’s disease and multiple sclerosis patients. Int J Hyg Environ Health. 2011;214:335–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Direskeneli H, Mumcu G. A possible decline in the incidence and severity of Behcet’s disease: implications for an infectious etiology and oral health. Clin Exp Rheumatol. 2010;28:S86–90.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Division of Rheumatology, Department of Internal Medicine, Istanbul Faculty of MedicineIstanbul UniversityIstanbulTurkey

Personalised recommendations