Hydatidiform Moles

  • Ngoc Minh Phuong Nguyen
  • Pierre-Adrien Bolze
  • Rima SlimEmail author


Hydatidiform mole (HM) is a form of human pregnancy loss that is characterized by the absence of, or abnormal, embryonic development and hyperproliferation of the trophoblast. The common form is sporadic and has a multifactorial etiology. Recurrent HM has a Mendelian etiology and segregates according to an autosomal recessive mode of transmission. To date, two genes, NLRP7 and KHDC3L, responsible for recurrent HM have been identified. NLRP7 is the major gene for this condition and underlies the etiology of recurrent HM in 55% of patients with at least two occurrences of HM. Here, we review the current knowledge about this condition and focus on the known roles of NLRP7 in the pathogenesis of recurrent HM.


Hydatidiform mole NLRP7 Imprinting defect Subcortical maternal complex (SCMC) Early embryonic arrest Decreased inflammation Delayed rejection 



Apoptosis-associated speck-like protein containing a CARD


Adenosine triphosphate


Caspase activation and recruitment domain


Cyclin dependent kinase inhibitor 1C


Complete hydatidiform mole


International Federation of Gynecology and Obstetrics


Gestational trophoblastic neoplasia


Human chorionic gonadotropin


Human embryonic kidney cells 293


Hydatidiform mole


Interleukin 1 beta


KH domain-containing protein 3


KH domain containing 3 like, subcortical maternal complex member




Leucine-rich domain


NAIP, CIITA, HET-E, and TP1 domain


NOD-like receptor


NLR family pyrin domain containing 2


NLR family pyrin domain containing 3


NLR family pyrin domain containing 5


NLR family pyrin domain containing 7


Nucleotide-binding oligomerization domain


Oocyte expressed protein


The protein coded by CDKN1C


Peptidyl arginine deiminase 6


Partial hydatidiform mole


Product of conception


Pyrin domain


Recurrent hydatidiform mole


Subcortical maternal complex


Transfected monocytic cell line


Transducin like enhancer of split 6


Zinc finger BED-type containing 3



NMPN was supported by fellowships from the Réseau Québécois en Reproduction, McGill Faculty of Medicine, RI-MUHC Desjardins Studentship in Child Health Research, and CRRD. This work was supported by the Canadian Institute of Health Research [MOP-130364] to RS.


  1. 1.
    Richardson MV, Hertig AT. New England’s first recorded hydatidiform mole; a historical note. N Engl J Med. 1959;260:544–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Savage P, et al. The demographics of molar pregnancies in England and Wales from 2000-2009. J Reprod Med. 2010;55:341–5.PubMedGoogle Scholar
  3. 3.
    Grimes DA. Epidemiology of gestational trophoblastic disease. Am J Obstet Gynecol. 1984;150:309–18.CrossRefGoogle Scholar
  4. 4.
    Bracken MB, Brinton LA, Hayashi K. Epidemiology of hydatidiform mole and choriocarcinoma. Epidemiol Rev. 1984;6:52–75.CrossRefGoogle Scholar
  5. 5.
    Steigrad SJ. Epidemiology of gestational trophoblastic diseases. Best Pract Res Clin Obstet Gynaecol. 2003;17:837–47.CrossRefGoogle Scholar
  6. 6.
    Bagshawe KD, Dent J, Webb J. Hydatidiform mole in England and Wales 1973-83. Lancet. 1986;2:673–7.CrossRefGoogle Scholar
  7. 7.
    Berkowitz RS, Im SS, Bernstein MR, Goldstein DP. Gestational trophoblastic disease. Subsequent pregnancy outcome, including repeat molar pregnancy. J Reprod Med. 1998;43:81–6.PubMedGoogle Scholar
  8. 8.
    Boufettal H, et al. Complete hydatiforme mole in Morocco: epidemiological and clinical study. J Gynecol Obstet Biol Reprod (Paris). 2011;40:419–29.CrossRefGoogle Scholar
  9. 9.
    Horn LC, Kowalzik J, Bilek K, Richter CE, Einenkel J. Clinicopathologic characteristics and subsequent pregnancy outcome in 139 complete hydatidiform moles. Eur J Obstet Gynecol Reprod Biol. 2006;128:10–4.CrossRefGoogle Scholar
  10. 10.
    Kim JH, Park DC, Bae SN, Namkoong SE, Kim SJ. Subsequent reproductive experience after treatment for gestational trophoblastic disease. Gynecol Oncol. 1998;71:108–12.CrossRefGoogle Scholar
  11. 11.
    Kronfol NM, Iliya FA, Hajj SN. Recurrent hydatidiform mole: a report of five cases with review of the literature. J Med Liban. 1969;22:507–20.PubMedGoogle Scholar
  12. 12.
    Sebire NJ, et al. Risk of recurrent hydatidiform mole and subsequent pregnancy outcome following complete or partial hydatidiform molar pregnancy. BJOG. 2003;110:22–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Shih IM, Kurman RJ. p63 expression is useful in the distinction of epithelioid trophoblastic and placental site trophoblastic tumors by profiling trophoblastic subpopulations. Am J Surg Pathol. 2004;28:1177–83.CrossRefGoogle Scholar
  14. 14.
    Messerli ML, Lilienfeld AM, Parmley T, Woodruff JD, Rosenshein NB. Risk factors for gestational trophoblastic neoplasia. Am J Obstet Gynecol. 1985;153:294–300.CrossRefGoogle Scholar
  15. 15.
    Yen S, MacMahon B. Epidemiologic features of trophoblastic disease. Am J Obstet Gynecol. 1968;101:126–32.CrossRefGoogle Scholar
  16. 16.
    Palmer JR, et al. Oral contraceptive use and risk of gestational trophoblastic tumors. J Natl Cancer Inst. 1999;91:635–40.CrossRefGoogle Scholar
  17. 17.
    Graham IH, Fajardo AM, Richards RL. Epidemiological study of complete and partial hydatidiform mole in Abu Dhabi: influence age and ethnic group. J Clin Pathol. 1990;43:661–4.CrossRefGoogle Scholar
  18. 18.
    Nguyen NMP, et al. The genetics of recurrent hydatidiform moles: new insights and lessons from a comprehensive analysis of 113 patients. Mod Pathol. 2018;31(7):1116–30.CrossRefPubMedGoogle Scholar
  19. 19.
    Banet N, et al. Characteristics of hydatidiform moles: analysis of a prospective series with p57 immunohistochemistry and molecular genotyping. Mod Pathol. 2014;27:238–54.CrossRefPubMedGoogle Scholar
  20. 20.
    Murdoch S, et al. Mutations in NALP7 cause recurrent hydatidiform moles and reproductive wastage in humans. Nat Genet. 2006;38:300–2.CrossRefGoogle Scholar
  21. 21.
    Qian J, et al. The genetics of recurrent hydatidiform moles in China: correlations between NLRP7 mutations, molar genotypes, and reproductive outcomes. Mol Hum Reprod. 2011;17:612–9.CrossRefGoogle Scholar
  22. 22.
    Slim R, Bagga R, Chebaro W, Srinivasan R, Agarwal N. A strong founder effect for two NLRP7 mutations in the Indian population: an intriguing observation. Clin Genet. 2009;76:292–5.CrossRefGoogle Scholar
  23. 23.
    Hayward BE, et al. Genetic and epigenetic analysis of recurrent hydatidiform mole. Hum Mutat. 2009;30:E629–39.CrossRefGoogle Scholar
  24. 24.
    Estrada H, Buentello B, Zenteno JC, Fiszman R, Aguinaga M. The p.L750V mutation in the NLRP7 gene is frequent in Mexican patients with recurrent molar pregnancies and is not associated with recurrent pregnancy loss. Prenat Diagn. 2013;33(3):205–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Parry DA, et al. Mutations causing familial biparental hydatidiform mole implicate c6orf221 as a possible regulator of genomic imprinting in the human oocyte. Am J Hum Genet. 2011;89:451–8; [pii]: S0002-9297(11)00319-3.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Eagles N, et al. Risk of recurrent molar pregnancies following complete and partial hydatidiform moles. Hum Reprod. 2015;30:2055–63.CrossRefPubMedGoogle Scholar
  27. 27.
    El-Maarri O, et al. Maternal alleles acquiring paternal methylation patterns in biparental complete hydatidiform moles. Hum Mol Genet. 2003;12:1405–13.CrossRefGoogle Scholar
  28. 28.
    Kou YC, et al. A recurrent intragenic genomic duplication, other novel mutations in NLRP7 and imprinting defects in recurrent biparental hydatidiform moles. Mol Hum Reprod. 2008;14:33–40.CrossRefPubMedGoogle Scholar
  29. 29.
    Ito Y, et al. Novel nonsense mutation in the NLRP7 gene associated with recurrent hydatidiform mole. Gynecol Obstet Investig. 2016;81:353–8.CrossRefGoogle Scholar
  30. 30.
    Sanchez-Delgado M, et al. Absence of maternal methylation in biparental hydatidiform moles from women with NLRP7 maternal-effect mutations reveals widespread placenta-specific imprinting. PLoS Genet. 2015;11:e1005644.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Nguyen NM, et al. Comprehensive genotype-phenotype correlations between NLRP7 mutations and the balance between embryonic tissue differentiation and trophoblastic proliferation. J Med Genet. 2014;51:623–34.CrossRefPubMedGoogle Scholar
  32. 32.
    Mahadevan S, et al. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet. 2014;23:706–16.CrossRefPubMedGoogle Scholar
  33. 33.
    Kinoshita T, Wang Y, Hasegawa M, Imamura R, Suda T. PYPAF3, a PYRIN-containing APAF-1-like protein, is a feedback regulator of caspase-1-dependent interleukin-1{beta} secretion. J Biol Chem. 2005;280:21720–5.CrossRefGoogle Scholar
  34. 34.
    Okada K, et al. Oncogenic role of NALP7 in testicular seminomas. Cancer Sci. 2004;95:949–54.CrossRefGoogle Scholar
  35. 35.
    Zhang P, et al. Expression analysis of the NLRP gene family suggests a role in human preimplantation development. PLoS One. 2008;3:e2755.CrossRefGoogle Scholar
  36. 36.
    Akoury E, Zhang L, Ao A, Slim R. NLRP7 and KHDC3L, the two maternal-effect proteins responsible for recurrent hydatidiform moles, co-localize to the oocyte cytoskeleton. Hum Reprod. 2015;30:159–69.CrossRefPubMedGoogle Scholar
  37. 37.
    Li L, Baibakov B, Dean J. A subcortical maternal complex essential for preimplantation mouse embryogenesis. Dev Cell. 2008;15:416–25.CrossRefGoogle Scholar
  38. 38.
    Yurttas P, et al. Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development. 2008;135:2627–36.CrossRefGoogle Scholar
  39. 39.
    Mahadevan S, et al. Maternally expressed NLRP2 links the subcortical maternal complex (SCMC) to fertility, embryogenesis and epigenetic reprogramming. Sci Rep. 2017;7:44667.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gao Z, et al. Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J Mol Cell Biol. 2018;10:74–88.CrossRefPubMedGoogle Scholar
  41. 41.
    Alazami AM, et al. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol. 2015;16:240.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Xu Y, et al. Mutations in PADI6 cause female infertility characterized by early embryonic arrest. Am J Hum Genet. 2016;99:744–52.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Maddirevula S, et al. The human knockout phenotype of PADI6 is female sterility caused by cleavage failure of their fertilized eggs. Clin Genet. 2017;91:344–5.CrossRefPubMedGoogle Scholar
  44. 44.
    Qian J, et al. Biallelic PADI6 variants linking infertility, miscarriages, and hydatidiform moles. Eur J Hum Genet. 2018;26:1007–13.CrossRefPubMedGoogle Scholar
  45. 45.
    Edwards R, et al. Preimplantation diagnosis and recurrent hydatidiform mole. Lancet. 1990;335:1030–1.CrossRefGoogle Scholar
  46. 46.
    Edwards RG, et al. Pronuclear, cleavage and blastocyst histories in the attempted preimplantation diagnosis of the human hydatidiform mole. Hum Reprod. 1992;7:994–8.CrossRefGoogle Scholar
  47. 47.
    Pal L, Toth TL, Leykin L, Isaacson KB. High incidence of triploidy in in-vitro fertilized oocytes from a patient with a previous history of recurrent gestational trophoblastic disease. Hum Reprod. 1996;11:1529–32.CrossRefGoogle Scholar
  48. 48.
    Reubinoff BE, et al. Intracytoplasmic sperm injection combined with preimplantation genetic diagnosis for the prevention of recurrent gestational trophoblastic disease. Hum Reprod. 1997;12:805–8.CrossRefPubMedGoogle Scholar
  49. 49.
    Sills ES, et al. Pathogenic variant in NLRP7 (19q13.42) associated with recurrent gestational trophoblastic disease: data from early embryo development observed during in vitro fertilization. Clin Exp Reprod Med. 2017;44:40–6.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Singer H, et al. NLRP7 inter-domain interactions: the NACHT-associated domain is the physical mediator for oligomeric assembly. Mol Hum Reprod. 2014;20:990–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Messaed C, et al. NLRP7, a nucleotide oligomerization domain-like receptor protein, is required for normal cytokine secretion and co-localizes with Golgi and the microtubule-organizing center. J Biol Chem. 2011;286:43313–23.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Khare S, et al. An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity. 2012;36:464–76.CrossRefGoogle Scholar
  53. 53.
    Zhou Y, et al. Virulent Mycobacterium bovis Beijing strain activates the NLRP7 inflammasome in THP-1 macrophages. PLoS One. 2016;11:e0152853.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Messaed C, et al. NLRP7 in the spectrum of reproductive wastage: rare non-synonymous variants confer genetic susceptibility to recurrent reproductive wastage. J Med Genet. 2011;48:540–8.CrossRefPubMedGoogle Scholar
  55. 55.
    Agostini L, et al. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20:319–25.CrossRefGoogle Scholar
  56. 56.
    Loock J, et al. Genetic predisposition (NLRP3 V198M mutation) for IL-1-mediated inflammation in a patient with Schnitzler syndrome. J Allergy Clin Immunol. 2010;125:500–2; [pii]: S0091-6749(09)01718-7.CrossRefPubMedGoogle Scholar
  57. 57.
    Jeru I, et al. Role of interleukin-1beta in NLRP12-associated autoinflammatory disorders and resistance to anti-interleukin-1 therapy. Arthritis Rheum. 2011;63:2142–8.CrossRefPubMedGoogle Scholar
  58. 58.
    Sun SY, et al. Changing presentation of complete hydatidiform mole at the New England Trophoblastic Disease Center over the past three decades: does early diagnosis alter risk for gestational trophoblastic neoplasia? Gynecol Oncol. 2015;138:46–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Cole LA. hCG and hyperglycosylated hCG in the establishment and evolution of hemochorial placentation. J Reprod Immunol. 2009;82:112–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Lurain JR. Gestational trophoblastic disease I: epidemiology, pathology, clinical presentation and diagnosis of gestational trophoblastic disease, and management of hydatidiform mole. Am J Obstet Gynecol. 2010;203:531–9.CrossRefPubMedGoogle Scholar
  61. 61.
    Lurain JR. Gestational trophoblastic disease II: classification and management of gestational trophoblastic neoplasia. Am J Obstet Gynecol. 2011;204:11–8.CrossRefPubMedGoogle Scholar
  62. 62.
    FIGO Oncology Committee. FIGO staging for gestational trophoblastic neoplasia 2000. FIGO Oncology Committee. Int J Gynaecol Obstet. 2002;77:285–7.CrossRefGoogle Scholar
  63. 63.
    Boufaied N, et al. Identification of genes expressed in a mesenchymal subset regulating prostate organogenesis using tissue and single cell transcriptomics. Sci Rep. 2017;7:16385.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Bolze PA, et al. Formalised consensus of the European Organisation for Treatment of Trophoblastic Diseases on management of gestational trophoblastic diseases. Eur J Cancer. 2015;51:1725–31.CrossRefPubMedGoogle Scholar
  65. 65.
    Mangili G, et al. Trophoblastic disease review for diagnosis and management: a joint report from the International Society for the Study of Trophoblastic Disease, European Organisation for the Treatment of Trophoblastic Disease, and the Gynecologic Cancer InterGroup. Int J Gynecol Cancer. 2014;24:S109–16.CrossRefPubMedGoogle Scholar
  66. 66.
    Moodley M, Tunkyi K, Moodley J. Gestational trophoblastic syndrome: an audit of 112 patients. A South African experience. Int J Gynecol Cancer. 2003;13:234–9.CrossRefGoogle Scholar
  67. 67.
    Seckl MJ, Sebire NJ, Berkowitz RS. Gestational trophoblastic disease. Lancet. 2010;376:717–29.CrossRefGoogle Scholar
  68. 68.
    Bolze PA, et al. Mortality rate of gestational trophoblastic neoplasia with a FIGO score of ≥13. Am J Obstet Gynecol. 2016;214(390):e391–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ngoc Minh Phuong Nguyen
    • 1
    • 2
  • Pierre-Adrien Bolze
    • 3
  • Rima Slim
    • 1
    • 2
    Email author
  1. 1.Department of Human GeneticsMcGill University Health Centre Research InstituteMontréalCanada
  2. 2.Department of Obstetrics and GynecologyMcGill University Health Centre Research InstituteMontréalCanada
  3. 3.French Reference Center for Trophoblastic DiseasesUniversité de Lyon 1 Claude Bernard, University Hospital Lyon SudPierre BéniteFrance

Personalised recommendations