Advertisement

Genetic Causes of Inflammatory Bone Disease

  • James Verbsky
  • Polly J. FergusonEmail author
Chapter

Abstract

This chapter focuses on monogenic autoinflammatory disorders that affect bone. The presence of sterile bone inflammation may be accompanied by inflammation of the skin and intestinal tract. The pathophysiology varies by syndrome and includes dysregulation of the IL-1 pathway or aberrant intracellular signaling defects leading to activation of innate immune cells including osteoclasts. These are rare disorders with variable outcomes. IL-1 inhibitors have been used successfully to decrease inflammation in Majeed syndrome, deficiency of the interleukin receptor antagonist and for non-osseous manifestations of neonatal onset multisystem inflammatory disease. For other disorders such as cherubism, treatment remains challenging. Recognition of additional monogenic autoinflammatory is likely as this is a very new field of investigation.

Keywords

Majeed syndrome Deficiency of the interleukin-1 receptor antagonist (DIRA) Interleukin-1 Neonatal onset multisystem inflammatory disease (NOMID) Cherubism Schnitzler syndrome Primary hypertrophic osteoarthropathy LPIN2 NLRP3 Pstpip2 SH3BP2 

Abbreviations

ADP

Adenosine diphosphate

ASC

Apoptosis-associated speck-like protein containing a carboxy-terminal CARD

c-ABL

Abelson murine leukemia viral oncogene homolog 1

CDA

Congenital dyserythropoietic anemia (CDA)

CNO

Chronic non-bacterial osteomyelitis

CRMO

Chronic recurrent multifocal osteomyelitis

CRP

C-reactive protein

Csk

C-terminal Src kinase

DIRA

Deficiency of the interleukin-1 receptor antagonist

ERK

Extracellular signal-regulated kinase

ESR

Erythrocyte sedimentation rate

FBLIM1

Filamin binding LIM protein 1 gene

FBLP1

Filamin binding LIM protein 1

HPGD

15-hydroxyprostaglandin dehydrogenase

IL

Interleukin

IL-1AcP

IL-1 receptor accessory protein

IL-1RI

IL-1 receptor I

IL1RN

Interleukin-1 receptor antagonist gene symbol

IRAK4

Interleukin 1 receptor associated kinase 4

LPIN2

Lipin2 gene symbol

MAPK

MAP kinase

M-CSF

Macrophage colony-stimulating factor

MRI

Magnetic resonance imaging

MyD88

Myeloid differentiation primary response 88

NFAT

Nuclear factor of activated T-cells

NLRP3

NLR family pyrin domain containing 3

NOMID

Neonatal onset multisystem inflammatory disease

NR4A2

Nuclear receptor subfamily 4 group A member 2

NSAID

Non-steroidal anti-inflammatory drugs

P2X7R

Purinergic receptor P2X 7

PAP

Phosphatidate phosphatase

PHO

Primary hypertrophic osteoarthropathy

Pstpip2

Proline-serine-threonine phosphatase interacting protein 2

PTP PEST

 Protein-tyrosine phosphatase with proline (P), glutamic acid (E), serine (S), and threonine (T) motif

RANKL

Receptor activator of nuclear factor kappa-Β ligand

SH3BP2

SH3 binding protein 2

SHIP1

Phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1

STAT

Signal transducer and activator of transcription

STIR

Short tau inversion recovery

Syk

Spleen tyrosine kinase

TNF

Tumor necrosis factor

References

  1. 1.
    Majeed HA, Kalaawi M, Mohanty D, et al. Congenital dyserythropoietic anemia and chronic recurrent multifocal osteomyelitis in three related children and the association with Sweet syndrome in two siblings. J Pediatr. 1989;115(5 Pt 1):730–4.CrossRefGoogle Scholar
  2. 2.
    Majeed HA, El-Shanti H, Al-Rimawi H, Al-Masri N. On mice and men: an autosomal recessive syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia. J Pediatr. 2000;137(3):441–2.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Majeed HA, Al-Tarawna M, El-Shanti H, Kamel B, Al-Khalaileh F. The syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia. Report of a new family and a review. Eur J Pediatr. 2001;160(12):705–10.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Al-Mosawi ZS, Al-Saad KK, Ijadi-Maghsoodi R, El-Shanti HI, Ferguson PJ. A splice site mutation confirms the role of LPIN2 in Majeed syndrome. Arthritis Rheum. 2007;56(3):960–4. PubMed PMID: 17330256.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Herlin T, Fiirgaard B, Bjerre M, et al. Efficacy of anti-IL-1 treatment in Majeed syndrome. Ann Rheum Dis. 2013;72(3):410–3. PubMed PMID: 23087183. Pubmed Central PMCID: 3660147. Epub 2012/10/23. eng.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Rao AP, Gopalakrishna DB, Bing X, Ferguson PJ. Phenotypic variability in Majeed syndrome. J Rheumatol. 2016;43(6):1258–9. PubMed PMID: 27252506. Pubmed Central PMCID: 4898189.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Moussa T, Bhat V, Kini V, Fathalla BM. Clinical and genetic association, radiological findings and response to biological therapy in seven children from Qatar with non-bacterial osteomyelitis. Int J Rheum Dis. 2017;20(9):1286–96. PubMed PMID: 27860302.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Pinto-Fernandez C, Seoane-Reula ME. Efficacy of treatment with IL-1RA in Majeed syndrome. Allergol Immunopathol. 2017;45(1):99–101. PubMed PMID: 27480788CrossRefGoogle Scholar
  9. 9.
    Ferguson PJ, Chen S, Tayeh MK, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet. 2005;42(7):551–7. PubMed PMID: 15994876. Pubmed Central PMCID: 1736104. Epub 2005/07/05. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    El-Shanti HI, Ferguson PJ. Chronic recurrent multifocal osteomyelitis: a concise review and genetic update. Clin Orthop Relat Res. 2007;462:11–9. PubMed PMID: 17496555.CrossRefGoogle Scholar
  11. 11.
    Cox AJ, Zhao Y, Ferguson PJ. Chronic recurrent multifocal osteomyelitis and related diseases-update on pathogenesis. Curr Rheumatol Rep. 2017;19(4):18. PubMed PMID: 28361334.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Bjorksten B, Boquist L. Histopathological aspects of chronic recurrent multifocal osteomyelitis. J Bone Joint Surg Br. 1980;62(3):376–80.CrossRefGoogle Scholar
  13. 13.
    Stern SM, Ferguson PJ. Autoinflammatory bone diseases. Rheum Dis Clin N Am. 2013;39(4):735–49. PubMed PMID: 24182852. Pubmed Central PMCID: 3823499.CrossRefGoogle Scholar
  14. 14.
    Girschick HJ, Huppertz HI, Harmsen D, Krauspe R, Muller-Hermelink HK, Papadopoulos T. Chronic recurrent multifocal osteomyelitis in children: diagnostic value of histopathology and microbial testing. Hum Pathol. 1999;30(1):59–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Phan J, Peterfy M, Reue K. Lipin expression preceding peroxisome proliferator-activated receptor-gamma is critical for adipogenesis in vivo and in vitro. J Biol Chem. 2004;279(28):29558–64. PubMed PMID: 15123608.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Peterfy M, Phan J, Xu P, Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet. 2001;27(1):121–4. PubMed PMID: 11138012.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Donkor J, Sariahmetoglu M, Dewald J, Brindley DN, Reue K. Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem. 2007;282(6):3450–7. PubMed PMID: 17158099.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Donkor J, Zhang P, Wong S, et al. A conserved serine residue is required for the phosphatidate phosphatase activity but not the transcriptional coactivator functions of lipin-1 and lipin-2. J Biol Chem. 2009;284(43):29968–78. PubMed PMID: 19717560. Pubmed Central PMCID: 2785625. Epub 2009/09/01. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lorden G, Sanjuan-Garcia I, de Pablo N, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med. 2017;214(2):511–28. PubMed PMID: 28031477.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cox AJ, Darbro BW, Laxer RM, et al. Recessive coding and regulatory mutations in FBLIM1 underlie the pathogenesis of chronic recurrent multifocal osteomyelitis (CRMO). PLoS One. 2017;12(3):e0169687. PubMed PMID: 28301468. Pubmed Central PMCID: 5354242.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Xiao G, Cheng H, Cao H, et al. Critical role of filamin-binding LIM protein 1 (FBLP-1)/migfilin in regulation of bone remodeling. J Biol Chem. 2012;287(25):21450–60. PubMed PMID: 22556421. Pubmed Central PMCID: 3375566.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Hamel J, Paul D, Gahr M, Hedrich CM. Pilot study: possible association of IL10 promoter polymorphisms with CRMO. Rheumatol Int. 2011;15. PubMed PMID: 21240493. Epub 2011/01/18. Eng.Google Scholar
  23. 23.
    Hofmann SR, Schwarz T, Moller JC, et al. Chronic non-bacterial osteomyelitis is associated with impaired Sp1 signaling, reduced IL10 promoter phosphorylation, and reduced myeloid IL-10 expression. Clin Immunol. 2011;141(3):317–27. PubMed PMID: 21925952. Epub 2011/09/20. eng.PubMedCrossRefGoogle Scholar
  24. 24.
    Hutchins AP, Poulain S, Miranda-Saavedra D. Genome-wide analysis of STAT3 binding in vivo predicts effectors of the anti-inflammatory response in macrophages. Blood. 2012;119(13):e110–9. PubMed PMID: 22323479.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Wu C. Migfilin and its binding partners: from cell biology to human diseases. J Cell Sci. 2005;118(Pt 4):659–64. PubMed PMID: 15701922.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Tu Y, Wu S, Shi X, Chen K, Wu C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell. 2003;113(1):37–47. PubMed PMID: 12679033.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Ithychanda SS, Das M, Ma YQ, et al. Migfilin, a molecular switch in regulation of integrin activation. J Biol Chem. 2009;284(7):4713–22. PubMed PMID: 19074766. Pubmed Central PMCID: 2640964.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Das M, Ithychanda SS, Qin J, Plow EF. Migfilin and filamin as regulators of integrin activation in endothelial cells and neutrophils. PLoS One. 2011;6(10):e26355. PubMed PMID: 22043318. Pubmed Central PMCID: 3197140.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Reddy S, Jia S, Geoffrey R, et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus. N Engl J Med. 2009;360(23):2438–44. PubMed PMID: 19494219. Epub 2009/06/06. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Aksentijevich I, Masters SL, Ferguson PJ, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist. N Engl J Med. 2009;360(23):2426–37. PubMed PMID: 19494218. Pubmed Central PMCID: 2876877. Epub 2009/06/06. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Thacker PG, Binkovitz LA, Thomas KB. Deficiency of interleukin-1-receptor antagonist syndrome: a rare auto-inflammatory condition that mimics multiple classic radiographic findings. Pediatr Radiol. 2012;42(4):495–8. PubMed PMID: 21789664.PubMedCrossRefGoogle Scholar
  32. 32.
    Jesus AA, Osman M, Silva CA, et al. A novel mutation of IL1RN in the deficiency of interleukin-1 receptor antagonist syndrome: description of two unrelated cases from Brazil. Arthritis Rheum. 2011;63(12):4007–17. PubMed PMID: 22127713. Epub 2011/12/01. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Altiok E, Aksoy F, Perk Y, et al. A novel mutation in the interleukin-1 receptor antagonist associated with intrauterine disease onset. Clin Immunol. 2012;145(1):77–81. PubMed PMID: WOS:000310094600012. English.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Mendonca LO, Malle L, Donovan FX, et al. Deficiency of interleukin-1 receptor antagonist (DIRA): report of the first indian patient and a novel deletion affecting IL1RN. J Clin Immunol. 2017;37(5):445–51. PubMed PMID: 28503715.PubMedCrossRefGoogle Scholar
  35. 35.
    Stenerson M, Dufendach K, Aksentijevich I, Brady J, Austin J, Reed AM. The first reported case of compound heterozygous IL1RN mutations causing deficiency of the interleukin-1 receptor antagonist. Arthritis Rheum. 2011;63(12):4018–22. PubMed PMID: 21792839. Epub 2011/07/28. eng.PubMedCrossRefGoogle Scholar
  36. 36.
    Minkis K, Aksentijevich I, Goldbach-Mansky R, et al. Interleukin 1 receptor antagonist deficiency presenting as infantile pustulosis mimicking infantile pustular psoriasis. Arch Dermatol. 2012;148(6):747–52. PubMed PMID: 22431714. Pubmed Central PMCID: 3474848.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Marrakchi S, Guigue P, Renshaw BR, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365(7):620–8. PubMed PMID: 21848462.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Onoufriadis A, Simpson MA, Pink AE, et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am J Hum Genet. 2011;89(3):432–7. PubMed PMID: 21839423. Pubmed Central PMCID: 3169817.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Aksentijevich I, Kastner DL. Genetics of monogenic autoinflammatory diseases: past successes, future challenges. Nat Rev Rheumatol. 2011;7(8):469–78. PubMed PMID: 21727933.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Chole RA, Faddis BT, Tinling SP. In vivo inhibition of localized bone resorption by human recombinant interleukin-1 receptor antagonist. J Bone Miner Res. 1995;10(2):281–4. PubMed PMID: 7754808.PubMedCrossRefGoogle Scholar
  41. 41.
    Gowen M, Meikle MC, Reynolds JJ. Stimulation of bone resorption in vitro by a non-prostanoid factor released by human monocytes in culture. Biochim Biophys Acta. 1983;762(3):471–4. PubMed PMID: 6849988.PubMedCrossRefGoogle Scholar
  42. 42.
    Kimble RB, Kitazawa R, Vannice JL, Pacifici R. Persistent bone-sparing effect of interleukin-1 receptor antagonist: a hypothesis on the role of IL-1 in ovariectomy-induced bone loss. Calcif Tissue Int. 1994;55(4):260–5. PubMed PMID: 7820776.PubMedCrossRefGoogle Scholar
  43. 43.
    Pacifici R, Rifas L, Teitelbaum S, et al. Spontaneous release of interleukin 1 from human blood monocytes reflects bone formation in idiopathic osteoporosis. Proc Natl Acad Sci U S A. 1987;84(13):4616–20. PubMed PMID: 3496597. Pubmed Central PMCID: 305141.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Thomson BM, Saklatvala J, Chambers TJ. Osteoblasts mediate interleukin 1 stimulation of bone resorption by rat osteoclasts. J Exp Med. 1986;164(1):104–12. PubMed PMID: 3487611. Pubmed Central PMCID: 2188199.PubMedCrossRefGoogle Scholar
  45. 45.
    Jones WA, Gerrie J, Pritchard J. Cherubism–familial fibrous dysplasia of the jaws. J Bone Joint Surg. 1950;32-B(3):334–47. PubMed PMID: 14778852.Google Scholar
  46. 46.
    Von Wowern N. Cherubism: a 36-year long-term follow-up of 2 generations in different families and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;90(6):765–72. PubMed PMID: 11113824.CrossRefGoogle Scholar
  47. 47.
    Meng XM, Yu SF, Yu GY. Clinicopathologic study of 24 cases of cherubism. Int J Oral Maxillofac Surg. 2005;34(4):350–6. PubMed PMID: 16053841.CrossRefGoogle Scholar
  48. 48.
    Jain V, Sharma R. Radiographic, CT and MRI features of cherubism. Pediatr Radiol. 2006;36(10):1099–104. PubMed PMID: 16847596.PubMedCrossRefGoogle Scholar
  49. 49.
    Perez-Sayans M, Barros-Angueira F, Suarez-Penaranda JE, Garcia-Garcia A. Variable expressivity familial cherubism: woman transmitting cherubism without suffering the disease. Head Face Med. 2013;9:33. PubMed PMID: 24382142. Pubmed Central PMCID: 3842775.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Southgate J, Sarma U, Townend JV, Barron J, Flanagan AM. Study of the cell biology and biochemistry of cherubism. J Clin Pathol. 1998;51(11):831–7. PubMed PMID: 10193324.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Mangion J, Rahman N, Edkins S, et al. The gene for cherubism maps to chromosome 4p16.3. Am J Hum Genet. 1999;65(1):151–7. PubMed PMID: 10364527.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Tiziani V, Reichenberger E, Buzzo CL, et al. The gene for cherubism maps to chromosome 4p16. Am J Hum Genet. 1999;65(1):158–66. PubMed PMID: 10364528.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Ueki Y, Tiziani V, Santanna C, et al. Mutations in the gene encoding c-Abl-binding protein SH3BP2 cause cherubism. Nat Genet. 2001;28(2):125–6. PubMed PMID: 11381256.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Lo B, Faiyaz-Ul-Haque M, Kennedy S, Aviv R, Tsui LC, Teebi AS. Novel mutation in the gene encoding c-Abl-binding protein SH3BP2 causes cherubism. Am J Med Genet A. 2003;121(1):37–40. PubMed PMID: 12900899.CrossRefGoogle Scholar
  55. 55.
    Bell SM, Shaw M, Jou YS, Myers RM, Knowles MA. Identification and characterization of the human homologue of SH3BP2, an SH3 binding domain protein within a common region of deletion at 4p16.3 involved in bladder cancer. Genomics. 1997;44(2):163–70. PubMed PMID: 9299232.PubMedCrossRefGoogle Scholar
  56. 56.
    Levaot N, Voytyuk O, Dimitriou I, et al. Loss of Tankyrase-mediated destruction of 3BP2 is the underlying pathogenic mechanism of cherubism. Cell. 2011;147(6):1324–39. PubMed PMID: 22153076. Pubmed Central PMCID: 3475183.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Ueki Y, Lin CY, Senoo M, et al. Increased myeloid cell responses to M-CSF and RANKL cause bone loss and inflammation in SH3BP2 “cherubism” mice. Cell. 2007;128(1):71–83. PubMed PMID: 17218256.PubMedCrossRefGoogle Scholar
  58. 58.
    Hero M, Suomalainen A, Hagstrom J, et al. Anti-tumor necrosis factor treatment in cherubism–clinical, radiological and histological findings in two children. Bone. 2013;52(1):347–53. PubMed PMID: 23069372.PubMedCrossRefGoogle Scholar
  59. 59.
    Pagnini I, Simonini G, Mortilla M, Giani T, Pascoli L, Cimaz R. Ineffectiveness of tumor necrosis factor-alpha inhibition in association with bisphosphonates for the treatment of cherubism. Clin Exp Rheumatol. 2011;29(1):147. PubMed PMID: 21345303.PubMedGoogle Scholar
  60. 60.
    Aliprantis AO, Ueki Y, Sulyanto R, et al. NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. J Clin Invest. 2008;118(11):3775–89. PubMed PMID: 18846253. Pubmed Central PMCID: 2564610.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kadlub N, Vazquez MP, Galmiche L, et al. The calcineurin inhibitor tacrolimus as a new therapy in severe cherubism. J Bone Miner Res. 2015;30(5):878–85. PubMed PMID: 25491283.PubMedCrossRefGoogle Scholar
  62. 62.
    Byrd L, Grossmann M, Potter M, Shen-Ong GL. Chronic multifocal osteomyelitis, a new recessive mutation on chromosome 18 of the mouse. Genomics. 1991;11(4):794–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Ferguson PJ, Bing X, Vasef MA, et al. A missense mutation in pstpip2 is associated with the murine autoinflammatory disorder chronic multifocal osteomyelitis. Bone. 2006;38(1):41–7. PubMed PMID: 16122996. Epub 2005/08/27. eng.PubMedCrossRefGoogle Scholar
  64. 64.
    Wu Y, Dowbenko D, Lasky LA. PSTPIP2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase. J Biol Chem. 1998;273(46):30487–96.PubMedCrossRefGoogle Scholar
  65. 65.
    Drobek A, Kralova J, Skopcova T, et al. PSTPIP2, a protein associated with autoinflammatory disease, interacts with inhibitory enzymes SHIP1 and Csk. J Immunol. 2015;195(7):3416–26. PubMed PMID: 26304991.PubMedCrossRefGoogle Scholar
  66. 66.
    Sztacho M, Segeletz S, Sanchez-Fernandez MA, Czupalla C, Niehage C, Hoflack B. BAR proteins PSTPIP1/2 regulate podosome dynamics and the resorption activity of osteoclasts. PLoS One. 2016;11(10):e0164829. PubMed PMID: 27760174. Pubmed Central PMCID: 5070766.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Tsujita K, Kondo A, Kurisu S, Hasegawa J, Itoh T, Takenawa T. Antagonistic regulation of F-BAR protein assemblies controls actin polymerization during podosome formation. J Cell Sci. 2013;126(Pt 10):2267–78. PubMed PMID: 23525018.PubMedCrossRefGoogle Scholar
  68. 68.
    Grosse J, Chitu V, Marquardt A, et al. Mutation of mouse Mayp/Pstpip2 causes a macrophage autoinflammatory disease. Blood. 2006;107(8):3350–8. PubMed PMID: 16397132. Pubmed Central PMCID: 1895761.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Liao HJ, Chyuan IT, Wu CS, et al. Increased neutrophil infiltration, IL-1 production and a SAPHO syndrome-like phenotype in PSTPIP2-deficient mice. Rheumatology (Oxford). 2015;54(7):1317–26. PubMed PMID: 25602062.CrossRefGoogle Scholar
  70. 70.
    Chen TC, Wu JJ, Chang WP, Hsu PN, Hsieh ST, Shyu BC. Spontaneous inflammatory pain model from a mouse line with N-ethyl-N-nitrosourea mutagenesis. J Biomed Sci. 2012;19:55. PubMed PMID: 22646813. Pubmed Central PMCID: 3414809.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Chitu V, Ferguson PJ, de Bruijn R, et al. Primed innate immunity leads to autoinflammatory disease in PSTPIP2-deficient cmo mice. Blood. 2009;114(12):2497–505. PubMed PMID: 19608749. Pubmed Central PMCID: 2746474.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cassel SL, Janczy JR, Bing X, et al. Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A. 2014;111(3):1072–7. PubMed PMID: 24395802. Pubmed Central PMCID: 3903222.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lukens JR, Gross JM, Calabrese C, et al. Critical role for inflammasome-independent IL-1beta production in osteomyelitis. Proc Natl Acad Sci U S A. 2014;111(3):1066–71. PubMed PMID: 24395792. Pubmed Central PMCID: 3903206.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lukens JR, Gurung P, Vogel P, et al. Dietary modulation of the microbiome affects autoinflammatory disease. Nature. 2014;516(7530):246–9. PubMed PMID: 25274309. Pubmed Central PMCID: 4268032.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    de Koning HD. Schnitzler’s syndrome: lessons from 281 cases. Clin Transl Allergy. 2014;4:41. PubMed PMID: 25905009. Pubmed Central PMCID: 4405827.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Simon A, Asli B, Braun-Falco M, et al. Schnitzler’s syndrome: diagnosis, treatment, and follow-up. Allergy. 2013;68(5):562–8. PubMed PMID: 23480774.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    de Koning HD, van Gijn ME, Stoffels M, et al. Myeloid lineage-restricted somatic mosaicism of NLRP3 mutations in patients with variant Schnitzler syndrome. J Allergy Clin Immunol. 2015;135(2):561–4. PubMed PMID: 25239704.CrossRefGoogle Scholar
  78. 78.
    Matucci-Cerinic M, Lotti T, Jajic I, Pignone A, Bussani C, Cagnoni M. The clinical spectrum of pachydermoperiostosis (primary hypertrophic osteoarthropathy). Medicine (Baltimore). 1991;70(3):208–14. PubMed PMID: 2030644.CrossRefGoogle Scholar
  79. 79.
    Jajic Z, Jajic I. Radiological changes of short and flat bones in primary hypertrophic osteoarthropathy. Ann Rheum Dis. 1998;57(12):747–8. PubMed PMID: 10070276. Pubmed Central PMCID: 1752522.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Giancane G, Diggle CP, Legger EG, et al. Primary hypertrophic osteoarthropathy: an update on patient features and treatment. J Rheumatol. 2015;42(11):2211–4. PubMed PMID: 26523041.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Levin SE, Harrisberg JR, Govendrageloo K. Familial primary hypertrophic osteoarthropathy in association with congenital cardiac disease. Cardiol Young. 2002;12(3):304–7. PubMed PMID: 12365184.PubMedCrossRefGoogle Scholar
  82. 82.
    Younes M, Touzi M, Bejia I, et al. Primary hypertrophic osteoarthropathy with bilateral destructive hip arthritis. Joint Bone Spine. 2006;73(4):477–9. PubMed PMID: 16626991.PubMedCrossRefGoogle Scholar
  83. 83.
    Uppal S, Diggle CP, Carr IM, et al. Mutations in 15-hydroxyprostaglandin dehydrogenase cause primary hypertrophic osteoarthropathy. Nat Genet. 2008;40(6):789–93. PubMed PMID: 18500342.PubMedCrossRefGoogle Scholar
  84. 84.
    Martinez-Ferrer A, Peris P, Alos L, Morales-Ruiz M, Guanabens N. Prostaglandin E2 and bone turnover markers in the evaluation of primary hypertrophic osteoarthropathy (pachydermoperiostosis): a case report. Clin Rheumatol. 2009;28(10):1229–33. PubMed PMID: 19455364.PubMedCrossRefGoogle Scholar
  85. 85.
    Busch J, Frank V, Bachmann N, et al. Mutations in the prostaglandin transporter SLCO2A1 cause primary hypertrophic osteoarthropathy with digital clubbing. J Invest Dermatol. 2012;132(10):2473–6. PubMed PMID: 22696055.PubMedCrossRefGoogle Scholar
  86. 86.
    Seifert W, Kuhnisch J, Tuysuz B, Specker C, Brouwers A, Horn D. Mutations in the prostaglandin transporter encoding gene SLCO2A1 cause primary hypertrophic osteoarthropathy and isolated digital clubbing. Hum Mutat. 2012;33(4):660–4. PubMed PMID: 22331663.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang Z, Xia W, He J, et al. Exome sequencing identifies SLCO2A1 mutations as a cause of primary hypertrophic osteoarthropathy. Am J Hum Genet. 2012;90(1):125–32. PubMed PMID: 22197487. Pubmed Central PMCID: 3257902.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Miyaura C, Inada M, Matsumoto C, et al. An essential role of cytosolic phospholipase A2alpha in prostaglandin E2-mediated bone resorption associated with inflammation. J Exp Med. 2003;197(10):1303–10. PubMed PMID: 12743173. Pubmed Central PMCID: 2193787.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Paralkar VM, Borovecki F, Ke HZ, et al. An EP2 receptor-selective prostaglandin E2 agonist induces bone healing. Proc Natl Acad Sci U S A. 2003;100(11):6736–40. PubMed PMID: 12748385. Pubmed Central PMCID: 164516.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ha H, Lee JH, Kim HN, et al. alpha-Lipoic acid inhibits inflammatory bone resorption by suppressing prostaglandin E2 synthesis. J Immunol. 2006;176(1):111–7. PubMed PMID: 16365401.PubMedCrossRefGoogle Scholar
  91. 91.
    Minamizaki T, Yoshiko Y, Kozai K, Aubin JE, Maeda N. EP2 and EP4 receptors differentially mediate MAPK pathways underlying anabolic actions of prostaglandin E2 on bone formation in rat calvaria cell cultures. Bone. 2009;44(6):1177–85. PubMed PMID: 19233324.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Ramirez-Yanez GO, Seymour GJ, Walsh LJ, Forwood MR, Symons AL. Prostaglandin E2 enhances alveolar bone formation in the rat mandible. Bone. 2004;35(6):1361–8. PubMed PMID: 15589217.PubMedCrossRefGoogle Scholar
  93. 93.
    Hill SC, Namde M, Dwyer A, Poznanski A, Canna S, Goldbach-Mansky R. Arthropathy of neonatal onset multisystem inflammatory disease (NOMID/CINCA). Pediatr Radiol. 2007;37(2):145–52. PubMed PMID: 17136361.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Zaki FM, Sridharan R, Pei TS, Ibrahim S, Ping TS. NOMID: the radiographic and MRI features and review of literature. J Radiol Case Rep. 2012;6(3):1–8. PubMed PMID: 22690285. Pubmed Central PMCID: 3370707.PubMedPubMedCentralGoogle Scholar
  95. 95.
    De Cunto CL, Liberatore DI, San Roman JL, Goldberg JC, Morandi AA, Feldman G. Infantile-onset multisystem inflammatory disease: a differential diagnosis of systemic juvenile rheumatoid arthritis. J Pediatr. 1997;130(4):551–6. PubMed PMID: 9108852.PubMedCrossRefGoogle Scholar
  96. 96.
    Sibley CH, Plass N, Snow J, et al. Sustained response and prevention of damage progression in patients with neonatal-onset multisystem inflammatory disease treated with anakinra: a cohort study to determine three- and five-year outcomes. Arthritis Rheum. 2012;64(7):2375–86. PubMed PMID: 22294344. Pubmed Central PMCID: 3474541.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Neven B, Marvillet I, Terrada C, et al. Long-term efficacy of the interleukin-1 receptor antagonist anakinra in ten patients with neonatal-onset multisystem inflammatory disease/chronic infantile neurologic, cutaneous, articular syndrome. Arthritis Rheum. 2010;62(1):258–67. PubMed PMID: 20039428. Epub 2009/12/30. eng.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rigante D, Leone A, Marrocco R, Laino ME, Stabile A. Long-term response after 6-year treatment with anakinra and onset of focal bone erosion in neonatal-onset multisystem inflammatory disease (NOMID/CINCA). Rheumatol Int. 2011;31(12):1661–4. PubMed PMID: 21240490.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Fujisawa A, Kambe N, Saito M, et al. Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. 2007;109(7):2903–11. PubMed PMID: 17164343.Google Scholar
  100. 100.
    Ellebedy AH, Lupfer C, Ghoneim HE, DeBeauchamp J, Kanneganti TD, Webby RJ. Inflammasome-independent role of the apoptosis-associated speck-like protein containing CARD (ASC) in the adjuvant effect of MF59. Proc Natl Acad Sci U S A. 2011;108(7):2927–32. PubMed PMID: 21270336. Pubmed Central PMCID: 3041074.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Qu C, Bonar SL, Hickman-Brecks CL, et al. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J. 2015;29(4):1269–79. PubMed PMID: 25477279. Pubmed Central PMCID: 4396608.PubMedCrossRefGoogle Scholar
  102. 102.
    Almeida MQ, Tsang KM, Cheadle C, et al. Protein kinase A regulates caspase-1 via Ets-1 in bone stromal cell-derived lesions: a link between cyclic AMP and pro-inflammatory pathways in osteoblast progenitors. Hum Mol Genet. 2011;20(1):165–75. PubMed PMID: 20940146. Pubmed Central PMCID: 3000682.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PediatricsMedical College of WisconsinMilwaukeeUSA
  2. 2.Department of PediatricsUniversity of Iowa Carver College of MedicineIowa CityUSA

Personalised recommendations