Advertisement

Very Early Onset Inflammatory Bowel Disease (VEOIBD)

  • Aleixo M. MuiseEmail author
Chapter

Abstract

Inflammatory bowel disease (IBD) is a chronic gastrointestinal tract disorder with many clinical presentations. The most common forms of IBD are ulcerative colitis, Crohn disease, and overlapping disease termed IBD unclassified (IBDU). In general, IBD is considered a complex disease with contributions from genetics (polygenic), an abnormal immune response and the microbiome, and unknown environmental factors. Recently, there has been a world-wide increase in the incidence of IBD including in developing countries. In developed nations, the biggest increase is observed in children, especially very young children who develop the disease before 6 years of age (very early onset IBD—VEOIBD). Recent genetic studies have shown that some VEOIBD patients will have monogenic forms of IBD and these are described in this chapter.

Keywords

Very early onset inflammatory bowel disease Interleukin (IL)-10R XIAP FOXP3 TTC7A 

Abbreviations

ARPC

Actin-related protein complex

CD

Crohn disease

CGD

Chronic granulomatous disease

CMPI

Cow’s milk protein intolerance

CTLA4

Cytotoxic T-lymphocyte-associated protein 4

DUOX

Dual oxidase

GWAS

Genome-wide association studies

HLH

Hemophagocytic lymphohistiocytosis

IBD

Inflammatory bowel disease

IBDU

IBD undetermined

IPEX

Imunodysregulation polyendocrinopathy, enteropathy X-linked

LRBA

Lipopolysaccharide-responsive and beige-like anchor

NADPH

Nicotinamide adenine dinucleotide phosphate

NF-κB

Nuclear factor kappa B

NLRC4

NOD-like receptors caspase containing 4

NO

Nitric oxide

NOD2

Nucleotide-binding oligomerization domain-containing protein 2

NOS

Nitric oxide synthase

NOX

NADPH oxidase

PID

Primary immunodeficiency

ROS

Reactive oxygen species

SNP

Single nucleotide polymorphism

TRIM22

Tripartite motif-containing 22

TTC7A

Tetratricopeptide repeat domain 7

UC

Ulcerative colitis

VEOIBD

Very early onset inflammatory bowel disease

XIAP

X-linked inhibitor of apoptosis

References

  1. 1.
    Cleynen I, Boucher G, Jostins L, et al. Inherited determinants of Crohn’s disease and ulcerative colitis phenotypes: a genetic association study. Lancet. 2016;387:156–67.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Uhlig HH, Muise AM. Clinical genomics in inflammatory bowel disease. Trends Genet. 2017;33:629–41.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–605.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Ordas I, Eckmann L, Talamini M, Baumgart DC, Sandborn WJ. Ulcerative colitis. Lancet. 2012;380:1606–19.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ruemmele FM, El Khoury MG, Talbotec C, et al. Characteristics of inflammatory bowel disease with onset during the first year of life. J Pediatr Gastroenterol Nutr. 2006;43:603–9.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Paul T, Birnbaum A, Pal DK, et al. Distinct phenotype of early childhood inflammatory bowel disease. J Clin Gastroenterol. 2006;40:583–6.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Griffiths AM. Specificities of inflammatory bowel disease in childhood. Best Pract Res Clin Gastroenterol. 2004;18:509–23.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Heyman MB, Kirschner BS, Gold BD, et al. Children with early-onset inflammatory bowel disease (IBD): analysis of a pediatric IBD consortium registry. J Pediatr. 2005;146:35–40.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Levine A, Griffiths A, Markowitz J, et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: the Paris classification. Inflamm Bowel Dis. 2011;17:1314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Silverberg MS, Satsangi J, Ahmad T, et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can J Gastroenterol. 2005;19(Suppl A):5–36.CrossRefGoogle Scholar
  11. 11.
    Uhlig HH, Schwerd T, Koletzko S, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147:990–1007.e3.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Ruel J, Ruane D, Mehandru S, Gower-Rousseau C, Colombel JF. IBD across the age spectrum: is it the same disease? Nat Rev Gastroenterol Hepatol. 2014;11:88–98.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Ng SC, Shi HY, Hamidi N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390:2769–78.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Benchimol EI, Fortinsky KJ, Gozdyra P, Van den Heuvel M, Van Limbergen J, Griffiths AM. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm Bowel Dis. 2011;17:423–39.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    El Mouzan MI, Saadah O, Al-Saleem K, et al. Incidence of pediatric inflammatory bowel disease in Saudi Arabia: a multicenter national study. Inflamm Bowel Dis. 2014;20:1085–90.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Pinsk V, Lemberg DA, Grewal K, Barker CC, Schreiber RA, Jacobson K. Inflammatory bowel disease in the South Asian pediatric population of British Columbia. Am J Gastroenterol. 2007;102:1077–83.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Benchimol EI, Mack DR, Guttmann A, et al. Inflammatory bowel disease in immigrants to Canada and their children: a population-based cohort study. Am J Gastroenterol. 2015;110:553–63.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Benchimol EI, Manuel DG, To T, et al. Asthma, type 1 and type 2 diabetes mellitus, and inflammatory bowel disease amongst South Asian immigrants to Canada and their children: a population-based cohort study. PLoS One. 2015;10:e0123599.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Benchimol EI, Bernstein CN, Bitton A, et al. Trends in epidemiology of pediatric inflammatory bowel disease in Canada: distributed network analysis of multiple population-based provincial health administrative databases. Am J Gastroenterol. 2017;112:1120–34.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Henderson P, Hansen R, Cameron FL, et al. Rising incidence of pediatric inflammatory bowel disease in Scotland. Inflamm Bowel Dis. 2012;18:999–1005.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hope B, Shahdadpuri R, Dunne C, et al. Rapid rise in incidence of Irish paediatric inflammatory bowel disease. Arch Dis Child. 2012;97:590–4.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Sartor RB. Microbial influences in inflammatory bowel diseases. Gastroenterology. 2008;134:577–94.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;491:119–24.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Franke A, McGovern DPB, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet. 2011;43:246–52.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Peters LA, Perrigoue J, Mortha A, et al. A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nat Genet. 2017;49:1437–49.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Marigorta UM, Denson LA, Hyams JS, et al. Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn’s disease. Nat Genet. 2017;49:1517–21.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Imielinski M, Baldassano RN, Griffiths A, et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat Genet. 2009;41:1335–40.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kugathasan S, Baldassano RN, Bradfield JP, et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet. 2008;40:1211–5.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Smith AM, Rahman FZ, Hayee B, et al. Disordered macrophage cytokine secretion underlies impaired acute inflammation and bacterial clearance in Crohn’s disease. J Exp Med. 2009;206:1883–97.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Ogura Y, Bonen DK, Inohara N, et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:603–6.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hampe J, Franke A, Rosenstiel P, et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet. 2007;39:207–11.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Rioux JD, Xavier RJ, Taylor KD, et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007;39:596–604.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Villani AC, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet. 2009;41:71–6.CrossRefGoogle Scholar
  35. 35.
    Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Parkes M, Barrett JC, Prescott NJ, et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39:830–2.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Choudhery MS, Badowski M, Muise A, Pierce J, Harris DT. Donor age negatively impacts adipose tissue-derived mesenchymal stem cell expansion and differentiation. J Transl Med. 2014;12:8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Muise AM, Walters T, Xu W, et al. Single nucleotide polymorphisms that increase expression of the guanosine triphosphatase RAC1 are associated with ulcerative colitis. Gastroenterology. 2011;141:633–41.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Liu JZ, van Sommeren S, Huang H, et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet. 2015;47:979–86.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Khor B, Gardet A, Xavier RJ. Genetics and pathogenesis of inflammatory bowel disease. Nature. 2011;474:307–17.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Shaw MH, Kamada N, Warner N, Kim YG, Nunez G. The ever-expanding function of NOD2: autophagy, viral recognition, and T cell activation. Trends Immunol. 2011;32:73–9.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn’s disease. Mucosal Immunol. 2011;4:484–95.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Philpott DJ, Sorbara MT, Robertson SJ, Croitoru K, Girardin SE. NOD proteins: regulators of inflammation in health and disease. Nat Rev Immunol. 2014;14:9–23.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Benchimol EI, Guttmann A, Griffiths AM, et al. Increasing incidence of paediatric inflammatory bowel disease in Ontario, Canada: evidence from health administrative data. Gut. 2009;58:1490–7.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Calkins BM. A meta-analysis of the role of smoking in inflammatory bowel disease. Dig Dis Sci. 1989;34:1841–54.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Klement E, Cohen RV, Boxman J, Joseph A, Reif S. Breastfeeding and risk of inflammatory bowel disease: a systematic review with meta-analysis. Am J Clin Nutr. 2004;80:1342–52.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Sawczenko A, Sandhu BK, Logan RF, et al. Prospective survey of childhood inflammatory bowel disease in the British Isles. Lancet. 2001;357:1093–4.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Henriksen M, Jahnsen J, Lygren I, et al. Ulcerative colitis and clinical course: results of a 5-year population-based follow-up study (the IBSEN study). Inflamm Bowel Dis. 2006;12:543–50.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Van Limbergen J, Russell RK, Drummond HE, et al. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology. 2008;135:1114–22.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Abraham BP, Mehta S, El-Serag HB. Natural history of pediatric-onset inflammatory bowel disease: a systematic review. J Clin Gastroenterol. 2012;46:581–9.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Bequet E, Sarter H, Fumery M, et al. Incidence and phenotype at diagnosis of very-early-onset compared with later-onset paediatric inflammatory bowel disease: a population-based study [1988-2011]. J Crohns Colitis. 2017;11:519–26.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Moeeni V, Day AS. Impact of inflammatory bowel disease upon growth in children and adolescents. ISRN Pediatr. 2011;2011:365712.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Benchimol EI, Mack DR, Nguyen GC, et al. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterology. 2014;147:803–13 e7; quiz e14-5.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dhillon SS, Fattouh R, Elkadri A, et al. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology. 2014;147:680–9 e2.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Muise AM, Xu W, Guo CH, et al. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut. 2012;61:1028–35.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Dhillon SS, Mastropaolo LA, Murchie R, et al. Higher activity of the inducible nitric oxide synthase contributes to very early onset inflammatory bowel disease. Clin Transl Gastroenterol. 2014;5:e46.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hayes P, Dhillon S, O’Neill K, et al. Defects in NADPH oxidase genes and in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol. 2015;1:489–502.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Blaydon DC, Biancheri P, Di WL, et al. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med. 2011;365:1502–8.CrossRefGoogle Scholar
  59. 59.
    Freeman EB, Koglmeier J, Martinez AE, et al. Gastrointestinal complications of epidermolysis bullosa in children. Br J Dermatol. 2008;158:1308–14.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    van den Akker PC, Mellerio JE, Martinez AE, et al. The inversa type of recessive dystrophic epidermolysis bullosa is caused by specific arginine and glycine substitutions in type VII collagen. J Med Genet. 2011;48:160–7.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Zimmer KP, Schumann H, Mecklenbeck S, Bruckner-Tuderman L. Esophageal stenosis in childhood: dystrophic epidermolysis bullosa without skin blistering due to collagen VII mutations. Gastroenterology. 2002;122:220–5.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Kammermeier J, Drury S, James CT, et al. Targeted gene panel sequencing in children with very early onset inflammatory bowel disease—evaluation and prospective analysis. J Med Genet. 2014;51:748–55.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Salomon J, Goulet O, Canioni D, et al. Genetic characterization of congenital tufting enteropathy: epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum Genet. 2014;133:299–310.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Vetrano S, Rescigno M, Cera MR, et al. Unique role of junctional adhesion molecule-a in maintaining mucosal homeostasis in inflammatory bowel disease. Gastroenterology. 2008;135:173–84.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kern JS, Herz C, Haan E, et al. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms. J Pathol. 2007;213:462–70.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Sadler E, Klausegger A, Muss W, et al. Novel KIND1 gene mutation in Kindler syndrome with severe gastrointestinal tract involvement. Arch Dermatol. 2006;142:1619–24.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Ussar S, Moser M, Widmaier M, et al. Loss of Kindlin-1 causes skin atrophy and lethal neonatal intestinal epithelial dysfunction. PLoS Genet. 2008;4:e1000289.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Cheng LE, Kanwar B, Tcheurekdjian H, et al. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol. 2009;132:124–31.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Mizukami T, Obara M, Nishikomori R, et al. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J Clin Immunol. 2012;32:39–49.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Orange JS, Jain A, Ballas ZK, Schneider LC, Geha RS, Bonilla FA. The presentation and natural history of immunodeficiency caused by nuclear factor kappaB essential modulator mutation. J Allergy Clin Immunol. 2004;113:725–33.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Karamchandani-Patel G, Hanson EP, Saltzman R, Kimball CE, Sorensen RU, Orange JS. Congenital alterations of NEMO glutamic acid 223 result in hypohidrotic ectodermal dysplasia and immunodeficiency with normal serum IgG levels. Ann Allergy Asthma Immunol. 2011;107:50–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Janecke AR, Heinz-Erian P, Muller T. Congenital sodium diarrhea: a form of intractable diarrhea, with a link to inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2016;63:170–6.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Janecke AR, Heinz-Erian P, Yin J, et al. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum Mol Genet. 2015;24:6614–23.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Avitzur Y, Guo C, Mastropaolo LA, et al. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology. 2014;146:1028–39.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Fiskerstrand T, Arshad N, Haukanes BI, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med. 2012;366:1586–95.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut. 2013;62:1795–805.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Felgentreff K, Perez-Becker R, Speckmann C, et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141:73–82.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Quartier P, Bustamante J, Sanal O, et al. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to activation-induced cytidine deaminase deficiency. Clin Immunol. 2004;110:22–9.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Kahr WH, Pluthero FG, Elkadri A, et al. Loss of the Arp2/3 complex component ARPC1B causes platelet abnormalities and predisposes to inflammatory disease. Nat Commun. 2017;8:14816.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Agarwal S, Mayer L. Pathogenesis and treatment of gastrointestinal disease in antibody deficiency syndromes. J Allergy Clin Immunol. 2009;124:658–64.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Maekawa K, Yamada M, Okura Y, et al. X-linked agammaglobulinemia in a 10-year-old boy with a novel non-invariant splice-site mutation in Btk gene. Blood Cells Mol Dis. 2010;44:300–4.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Uniken Venema WT, Voskuil MD, Dijkstra G, Weersma RK, Festen EA. The genetic background of inflammatory bowel disease: from correlation to causality. J Pathol. 2017;241:146–58.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Ozgur TT, Asal GT, Cetinkaya D, et al. Hematopoietic stem cell transplantation in a CD3 gamma-deficient infant with inflammatory bowel disease. Pediatr Transplant. 2008;12:910–3.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Levy J, Espanol-Boren T, Thomas C, et al. Clinical spectrum of X-linked hyper-IgM syndrome. J Pediatr. 1997;131:47–54.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Rohr J, Pannicke U, Doring M, et al. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency. J Clin Immunol. 2010;30:314–20.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Borggraefe I, Koletzko S, Arenz T, et al. Severe variant of x-linked dyskeratosis congenita (Hoyeraal-Hreidarsson Syndrome) causes significant enterocolitis in early infancy. J Pediatr Gastroenterol Nutr. 2009;49:359–63.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Sznajer Y, Baumann C, David A, et al. Further delineation of the congenital form of X-linked dyskeratosis congenita (Hoyeraal-Hreidarsson syndrome). Eur J Pediatr. 2003;162:863–7.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Knight SW, Heiss NS, Vulliamy TJ, et al. Unexplained aplastic anaemia, immunodeficiency, and cerebellar hypoplasia (Hoyeraal-Hreidarsson syndrome) due to mutations in the dyskeratosis congenita gene, DKC1. Br J Haematol. 1999;107:335–9.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Sanal O, Jing H, Ozgur T, et al. Additional diverse findings expand the clinical presentation of DOCK8 deficiency. J Clin Immunol. 2012;32:698–708.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Salzer E, Kansu A, Sic H, et al. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J Allergy Clin Immunol. 2014;133:1651–9 e12.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. J Allergy Clin Immunol. 2007;119:482–7.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    de Saint-Basile G, Le Deist F, Caniglia M, Lebranchu Y, Griscelli C, Fischer A. Genetic study of a new X-linked recessive immunodeficiency syndrome. J Clin Invest. 1992;89:861–6.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    DiSanto JP, Rieux-Laucat F, Dautry-Varsat A, Fischer A, de Saint Basile G. Defective human interleukin 2 receptor gamma chain in an atypical X chromosome-linked severe combined immunodeficiency with peripheral T cells. Proc Natl Acad Sci U S A. 1994;91:9466–70.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Gamez-Diaz L, August D, Stepensky P, et al. The extended phenotype of LPS-responsive beige-like anchor protein (LRBA) deficiency. J Allergy Clin Immunol. 2016;137:223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Serwas NK, Kansu A, Santos-Valente E, et al. Atypical manifestation of LRBA deficiency with predominant IBD-like phenotype. Inflamm Bowel Dis. 2015;21:40–7.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Schubert D, Bode C, Kenefeck R, et al. Autosomal dominant immune dysregulation syndrome in humans with CTLA4 mutations. Nat Med. 2014;20:1410–6.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Conley ME, Dobbs AK, Quintana AM, et al. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85alpha subunit of PI3K. J Exp Med. 2012;209:463–70.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Steinbach EC, Kobayashi T, Russo SM, et al. Innate PI3K p110delta regulates Th1/Th17 development and microbiota-dependent colitis. J Immunol. 2014;192:3958–68.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Heindl M, Handel N, Ngeow J, et al. Autoimmunity, intestinal lymphoid hyperplasia, and defects in mucosal B-cell homeostasis in patients with PTEN hamartoma tumor syndrome. Gastroenterology. 2012;142:1093–6 e6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Driessen GJ, IJspeert H, Wentink M, et al. Increased PI3K/Akt activity and deregulated humoral immune response in human PTEN deficiency. J Allergy Clin Immunol. 2016;138:1744–7 e5.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Shearer WT, Dunn E, Notarangelo LD, et al. Establishing diagnostic criteria for severe combined immunodeficiency disease (SCID), leaky SCID, and Omenn syndrome: the Primary Immune Deficiency Treatment Consortium experience. J Allergy Clin Immunol. 2014;133:1092–8.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Naviglio S, Arrigo S, Martelossi S, et al. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8:770–4.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Gallo EM, Loch DC, Habashi JP, et al. Angiotensin II-dependent TGF-beta signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest. 2014;124:448–60.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ballew BJ, Joseph V, De S, et al. A recessive founder mutation in regulator of telomere elongation helicase 1, RTEL1, underlies severe immunodeficiency and features of Hoyeraal Hreidarsson syndrome. PLoS Genet. 2013;9:e1003695.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Ballew BJ, Yeager M, Jacobs K, et al. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita. Hum Genet. 2013;132:473–80.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol. 2012;3:209.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Chan AY, Punwani D, Kadlecek TA, et al. A novel human autoimmune syndrome caused by combined hypomorphic and activating mutations in ZAP-70. J Exp Med. 2016;213:155–65.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27:20–1.CrossRefGoogle Scholar
  109. 109.
    Murugan D, Albert MH, Langemeier J, et al. Very early onset inflammatory bowel disease associated with aberrant trafficking of IL-10R1 and cure by T cell replete haploidentical bone marrow transplantation. J Clin Immunol. 2014;34:331–9.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;3:211.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Uzel G, Sampaio EP, Lawrence MG, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131:1611–23.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Takahashi N, Matsumoto K, Saito H, et al. Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol. 2009;182:5515–27.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Glocker EO, Kotlarz D, Boztug K, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033–45.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Glocker EO, Frede N, Perro M, et al. Infant colitis—it’s in the genes. Lancet. 376:1272.CrossRefGoogle Scholar
  115. 115.
    Aguilar C, Lenoir C, Lambert N, et al. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers. J Allergy Clin Immunol. 2014;134(5):1131–41.e9.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol. 2009;104:117–24.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Schappi MG, Smith VV, Goldblatt D, Lindley KJ, Milla PJ. Colitis in chronic granulomatous disease. Arch Dis Child. 2001;84:147–51.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Al-Bousafy A, Al-Tubuly A, Dawi E, Zaroog S, Schulze I. Libyan Boy with Autosomal Recessive Trait (P22-phox Defect) of chronic granulomatous disease. Libyan J Med. 2006;1:162–71.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Matute JD, Arias AA, Wright NA, et al. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009;114:3309–15.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kang EM, Marciano BE, DeRavin S, Zarember KA, Holland SM, Malech HL. Chronic granulomatous disease: overview and hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2011;127:1319–26; quiz 27–8.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW. Activation of the NADPH oxidase involves the small GTP-binding protein p21rac1. Nature. 1991;353:668–70.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Fernandez BA, Green JS, Bursey F, et al. Adult siblings with homozygous G6PC3 mutations expand our understanding of the severe congenital neutropenia type 4 (SCN4) phenotype. BMC Med Genet. 2012;13:111.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Cullinane AR, Vilboux T, O'Brien K, et al. Homozygosity mapping and whole-exome sequencing to detect SLC45A2 and G6PC3 mutations in a single patient with oculocutaneous albinism and neutropenia. J Invest Dermatol. 2011;131:2017–25.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Begin P, Patey N, Mueller P, et al. Inflammatory bowel disease and T cell lymphopenia in G6PC3 deficiency. J Clin Immunol. 2013;33:520–5.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Uzel G, Kleiner DE, Kuhns DB, Holland SM. Dysfunctional LAD-1 neutrophils and colitis. Gastroenterology. 2001;121:958–64.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    D’Agata ID, Paradis K, Chad Z, Bonny Y, Seidman E. Leucocyte adhesion deficiency presenting as a chronic ileocolitis. Gut. 1996;39:605–8.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Visser G, Rake JP, Fernandes J, et al. Neutropenia, neutrophil dysfunction, and inflammatory bowel disease in glycogen storage disease type Ib: results of the European Study on Glycogen Storage Disease type I. J Pediatr. 2000;137:187–91.CrossRefGoogle Scholar
  128. 128.
    Yamaguchi T, Ihara K, Matsumoto T, et al. Inflammatory bowel disease-like colitis in glycogen storage disease type 1b. Inflamm Bowel Dis. 2001;7:128–32.PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    Davis MK, Rufo PA, Polyak SF, Weinstein DA. Adalimumab for the treatment of Crohn-like colitis and enteritis in glycogen storage disease type Ib. J Inherit Metab Dis. 2008;31(Suppl 3):505–9.PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Rigaud S, Fondaneche MC, Lambert N, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444:110–4.CrossRefGoogle Scholar
  131. 131.
    Worthey EA, Mayer AN, Syverson GD, et al. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13:255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Zeissig Y, Petersen BS, Milutinovic S, et al. XIAP variants in male Crohn’s disease. Gut. 2015;64(1):66–76.PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Pachlopnik Schmid J, Canioni D, Moshous D, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117:1522–9.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Yang X, Kanegane H, Nishida N, et al. Clinical and genetic characteristics of XIAP deficiency in Japan. J Clin Immunol. 2012;32:411–20.PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Speckmann C, Ehl S. XIAP deficiency is a mendelian cause of late-onset IBD. Gut. 2014;63:1031–2.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Booth C, Gilmour KC, Veys P, et al. X-linked lymphoproliferative disease due to SAP/SH2D1A deficiency: a multicenter study on the manifestations, management and outcome of the disease. Blood. 2011;117:53–62.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Li Q, Lee CH, Peters LA, et al. Variants in TRIM22 that affect NOD2 signaling are associated with very-early-onset inflammatory bowel disease. Gastroenterology. 2016;150:1196–207.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    van Haaften-Visser DY, Harakalova M, Mocholi E, et al. Ankyrin repeat and zinc-finger domain-containing 1 mutations are associated with infantile-onset inflammatory bowel disease. J Biol Chem. 2017;292:7904–20.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Giannelou A, Wang H, Zhou Q, et al. Aberrant tRNA processing causes an autoinflammatory syndrome responsive to TNF inhibitors. Ann Rheum Dis. 2018;77(4):612–9.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Wedatilake Y, Niazi R, Fassone E, et al. TRNT1 deficiency: clinical, biochemical and molecular genetic features. Orphanet J Rare Dis. 2016;11:90.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Hazzan D, Seward S, Stock H, et al. Crohn’s-like colitis, enterocolitis and perianal disease in Hermansky-Pudlak syndrome. Colorect Dis. 2006;8:539–43.CrossRefGoogle Scholar
  142. 142.
    Erzin Y, Cosgun S, Dobrucali A, Tasyurekli M, Erdamar S, Tuncer M. Complicated granulomatous colitis in a patient with Hermansky-Pudlak syndrome, successfully treated with infliximab. Acta Gastroenterol Belg. 2006;69:213–6.PubMedPubMedCentralGoogle Scholar
  143. 143.
    Anderson PD, Huizing M, Claassen DA, White J, Gahl WA. Hermansky-Pudlak syndrome type 4 (HPS-4): clinical and molecular characteristics. Hum Genet. 2003;113:10–7.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Hussain N, Quezado M, Huizing M, et al. Intestinal disease in Hermansky-Pudlak syndrome: occurrence of colitis and relation to genotype. Clin Gastroenterol Hepatol. 2006;4:73–80.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Mora AJ, Wolfsohn DM. The management of gastrointestinal disease in Hermansky-Pudlak syndrome. J Clin Gastroenterol. 2011;45:700–2.PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Egritas O, Dalgic B. Infantile colitis as a novel presentation of familial Mediterranean fever responding to colchicine therapy. J Pediatr Gastroenterol Nutr. 2011;53:102–5.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Sari S, Egritas O, Dalgic B. The familial Mediterranean fever (MEFV) gene may be a modifier factor of inflammatory bowel disease in infancy. Eur J Pediatr. 2008;167:391–3.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Cardinale CJ, Kelsen JR, Baldassano RN, Hakonarson H. Impact of exome sequencing in inflammatory bowel disease. World J Gastroenterol. 2013;19:6721–9.PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Bader-Meunier B, Florkin B, Sibilia J, et al. Mevalonate kinase deficiency: a survey of 50 patients. Pediatrics. 2011;128:e152–9.PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Galeotti C, Meinzer U, Quartier P, et al. Efficacy of interleukin-1-targeting drugs in mevalonate kinase deficiency. Rheumatology (Oxford). 2012;51:1855–9.CrossRefGoogle Scholar
  151. 151.
    Zhou Q, Lee GS, Brady J, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cgamma2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet. 2012;91:713–20.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Meeths M, Entesarian M, Al-Herz W, et al. Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXBP2. Blood. 2010;116:2635–43.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Zhou Q, Wang H, Schwartz DM, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48:67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Takahashi S, Andreoletti G, Chen R, et al. De novo and rare mutations in the HSPA1L heat shock gene associated with inflammatory bowel disease. Genome Med. 2017;9:8.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Umeno J, Hisamatsu T, Esaki M, et al. A hereditary enteropathy caused by mutations in the SLCO2A1 gene, encoding a prostaglandin transporter. PLoS Genet. 2015;11:e1005581.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Uchida K, Nakajima A, Ushijima K, et al. Pediatric-onset chronic nonspecific multiple ulcers of small intestine: a nationwide survey and genetic study in Japan. J Pediatr Gastroenterol Nutr. 2017;64:565–8.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Fabre A, Charroux B, Martinez-Vinson C, et al. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet. 2012;90:689–92.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Egritas O, Dalgic B, Onder M. Tricho-hepato-enteric syndrome presenting with mild colitis. Eur J Pediatr. 2009;168:933–5.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Conrad MA, Dawany N, Sullivan KE, Devoto M, Kelsen JR. Novel ZBTB24 mutation associated with immunodeficiency, centromere instability, and facial anomalies type-2 syndrome identified in a patient with very early onset inflammatory bowel disease. Inflamm Bowel Dis. 2017;23:2252–5.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Stengaard-Pedersen K, Thiel S, Gadjeva M, et al. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med. 2003;349:554–60.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Jaeckle Santos LJ, Xing C, Barnes RB, et al. Refined mapping of X-linked reticulate pigmentary disorder and sequencing of candidate genes. Hum Genet. 2008;123:469–76.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Starokadomskyy P, Gemelli T, Rios JJ, et al. DNA polymerase-alpha regulates the activation of type I interferons through cytosolic RNA: DNA synthesis. Nat Immunol. 2016;17:495–504.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Okou DT, Mondal K, Faubion WA, et al. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2014;58:561–8.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Ashton JJ, Andreoletti G, Coelho T, et al. Identification of variants in genes associated with single-gene inflammatory bowel disease by whole-exome sequencing. Inflamm Bowel Dis. 2016;22:2317–27.PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Lo B, Zhang K, Lu W, et al. AUTOIMMUNE DISEASE. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science. 2015;349:436–40.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Duan Z, Gao B, Xu W, Xiong S. Identification of TRIM22 as a RING finger E3 ubiquitin ligase. Biochem Biophys Res Commun. 2008;374:502–6.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Sawyer SL, Emerman M, Malik HS. Discordant evolution of the adjacent antiretroviral genes TRIM22 and TRIM5 in mammals. PLoS Pathogens. 2007;3:e197.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Yu S, Gao B, Duan Z, Xu W, Xiong S. Identification of tripartite motif-containing 22 (TRIM22) as a novel NF-kappaB activator. Biochem Biophys Res Commun. 2011;410:247–51.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Obad S, Olofsson T, Mechti N, Gullberg U, Drott K. Expression of the IFN-inducible p53-target gene TRIM22 is down-regulated during erythroid differentiation of human bone marrow. Leukemia Res. 2007;31:995–1001.CrossRefGoogle Scholar
  170. 170.
    Barr SD, Smiley JR, Bushman FD. The interferon response inhibits HIV particle production by induction of TRIM22. PLoS Pathogens. 2008;4:e1000007.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Eldin P, Papon L, Oteiza A, Brocchi E, Lawson TG, Mechti N. TRIM22 E3 ubiquitin ligase activity is required to mediate antiviral activity against encephalomyocarditis virus. J Gen Virol. 2009;90:536–45.PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Di Pietro A, Kajaste-Rudnitski A, Oteiza A, et al. TRIM22 inhibits influenza A virus infection by targeting the viral nucleoprotein for degradation. J Virol. 2013;87:4523–33.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Kotlarz D, Beier R, Murugan D, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143:347–55.CrossRefGoogle Scholar
  174. 174.
    Glocker EO, Kotlarz D, Klein C, Shah N, Grimbacher B. IL-10 and IL-10 receptor defects in humans. Ann N Y Acad Sci. 2011;1246:102–7.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Engelhardt KR, Shah N, Faizura-Yeop I, et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131:825–30 e9.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Neven B, Mamessier E, Bruneau J, et al. A Mendelian predisposition to B-cell lymphoma caused by IL-10R deficiency. Blood. 2013;122:3713–22.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Shouval DS, Ebens CL, Murchie R, et al. Large B-cell lymphoma in an adolescent patient with interleukin-10 receptor deficiency and history of infantile inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2016;63:e15–7.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Marlow GJ, van Gent D, Ferguson LR. Why interleukin-10 supplementation does not work in Crohn’s disease patients. World J Gastroenterol. 2013;19:3931–41.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Nauseef WM. Biological roles for the NOX family NADPH oxidases. J Biol Chem. 2008;283:16961–5.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Heyworth PG, Cross AR, Curnutte JT. Chronic granulomatous disease. Curr Opin Immunol. 2003;15:578–84.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Werlin SL, Chusid MJ, Caya J, Oechler HW. Colitis in chronic granulomatous disease. Gastroenterology. 1982;82:328–31.PubMedPubMedCentralGoogle Scholar
  182. 182.
    Samuels ME, Majewski J, Alirezaie N, et al. Exome sequencing identifies mutations in the gene TTC7A in French-Canadian cases with hereditary multiple intestinal atresia. J Med Genet. 2013;50:324–9.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Bigorgne AE, Farin HF, Lemoine R, et al. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J Clin Invest. 2014;124:328–37.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Chen R, Giliani S, Lanzi G, et al. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias. J Allergy Clin Immunol. 2013;132:656–64 e17.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Lawless D, Mistry A, Wood PM, et al. Bialellic mutations in tetratricopeptide repeat domain 7A (TTC7A) cause common variable immunodeficiency-like phenotype with enteropathy. J Clin Immunol. 2017;37:617–22.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Woutsas S, Aytekin C, Salzer E, et al. Hypomorphic mutation in TTC7A causes combined immunodeficiency with mild structural intestinal defects. Blood. 2015;125:1674–6.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Yang W, Lee PP, Thong MK, et al. Compound heterozygous mutations in TTC7A cause familial multiple intestinal atresias and severe combined immunodeficiency. Clin Genet. 2015;88:542–9.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Notarangelo LD. Multiple intestinal atresia with combined immune deficiency. Curr Opin Pediatr. 2014;26:690–6.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Goley ED, Welch MD. The ARP2/3 complex: an actin nucleator comes of age. Nat Rev Mol Cell Biol. 2006;7:713–26.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Pollard TD. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct. 2007;36:451–77.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Rotty JD, Wu C, Bear JE. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat Rev Mol Cell Biol. 2013;14:7–12.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Romberg N, Al Moussawi K, Nelson-Williams C, et al. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46:1135–9.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Canna SW, de Jesus AA, Gouni S, et al. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140–6.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Thiagarajah JR, Kamin DS, Acra S, et al. Advances in evaluation of chronic diarrhea in infants. Gastroenterology. 2018;154(8):2045–2059.e6.PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Arnold DE, Heimall JR. A review of chronic granulomatous disease. Adv Ther. 2017;34:2543–57.PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Slatter MA, Gennery AR. Hematopoietic cell transplantation in primary immunodeficiency—conventional and emerging indications. Expert Rev Clin Immunol. 2018;14:103–14.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University of TorontoTorontoCanada
  2. 2.Cell Biology, Research Institute, SickKids Inflammatory Bowel Disease CentreThe Hospital for Sick ChildrenTorontoCanada

Personalised recommendations