Advertisement

Biology of Bone Grafting

  • Eduardo García-Rey
  • Enrique Gómez-Barrena
Chapter

Abstract

Allograft bone continues to play an important role in revision hip arthroplasty. A basic understanding of allograft biology and immunology is important in order to increase the success of allografting. The role of immunology in bone transplantation has been known for a long time, but it is now apparent that the bone remodeling system and immune system interact to affect the clinical success of bone transplantation. Neither of the two systems nor their interaction are completely understood. Meanwhile, allografting can still be used with success if one understands the role of allograft biology, immunology, and the important part the host environment have in bone transplantation. Bone extenders and enhancers, such as bioceramics, Demineralised bone matrix, and mesenchymal stem cells mixed with bone allograft have been assessed in acetabular revision surgery with promising results.

Keywords

Acetabular revision surgery Bone graf Biology 

References

  1. 1.
    Garbuz DS, Masri BA, Czitrom AA. Biology of allografting. Orthop Clin North Am. 1998;28(2):199–204.CrossRefGoogle Scholar
  2. 2.
    Schmitz MWJL, Hannink G, Gardeniers JWM, Verdonschot N, Slooff TJJH, Schreurs BW. Acetabular reconstruction with impaction bone-greafting and a cemented cup in patients younger than 50 years of age. A concise follo-up, at 27 to 35 years, of a previous report. J Bone Joint Surg Am. 2017;99(19):1440–6.CrossRefGoogle Scholar
  3. 3.
    Garbuz D, Morsi E, Gross AE. Revision of the acetabular component of a total hip arthroplasty with a massive structural allograft. J Bone Joint Surg Am. 1996;78-A:693–7.CrossRefGoogle Scholar
  4. 4.
    Paprosky WC, Perona PG, Lawrence JM. Acetabular defect classification and surgical reconstruction in revision arthroplasty. A 6-year follow-up evaluation. J Arthroplasty. 1994;9(1):33–44.CrossRefGoogle Scholar
  5. 5.
    Kwong LM, Jasty M, Harris WH. High failure rate of bulk femoral head allografts in total hip acetabular reconstructions at 10 years. J Arthroplasty. 1993;8:341–6.Google Scholar
  6. 6.
    Berrey BH Jr, Lord CF, Gebhardt MC. MankinHJ. Fractures of allografts. Frequency, treatment and results. J Bone Joint Surg Am. 1990;72(6):825–33.CrossRefGoogle Scholar
  7. 7.
    Lord CF, Gebhardt MC, Tomford WW, Mankin HJ. Infection of bone allografts: Incidence, nature and treatment. J Bone Joint Surg Am. 1988;70(3):369–76.CrossRefGoogle Scholar
  8. 8.
    Schreurs BW, Keurentjes JC, Gardeniers JW, Verdonschot N, Slooff TJ, Veth RP. Acetabular revision with impacted morsellised cancellous bone grafting and a cemented acetabular component: a 20- to 25-year follow-up. J Bone Joint Surg (Br). 2009;91(9):1148–53.CrossRefGoogle Scholar
  9. 9.
    Buttaro MA, Comba F, Pusso R, Piccaluga F. Acetabular revision with metal mesh, impaction bone grafting, and a cemented cup. Clin Orthop Relat Res. 2008;466(10):2482–90.CrossRefGoogle Scholar
  10. 10.
    Garcia-Cimbrelo E, Cruz-Pardos A, Garcia-Rey E, Ortega CJ. The survival and fate of acetabular reconstruction with impaction grafting for large defects. Clin Orthop Relat Res. 2010;468(12):3304–13.CrossRefGoogle Scholar
  11. 11.
    Phillips AM. Overview of the fracture healing cascade. Injury. 2005;36(Suppl 3):S5–7.CrossRefGoogle Scholar
  12. 12.
    Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC. The expression of cytokine activity by fracture callus. J Bone Miner Res. 1995;10(8):1272–81.CrossRefGoogle Scholar
  13. 13.
    Gerstenfeld LC, Cho TJ, Kon T, Aizawa T, Tsay A, Fitch J, Barnes GL, Graves DT, Einhorn TA. Impaired fracture healing in the absence of TNF-alpha signaling: the role of TNF-alpha in endochondral cartilage resorption. J Bone Miner Res. 2003;18(9):1584–92.CrossRefGoogle Scholar
  14. 14.
    Tsiridis E, Upadhyay N, Giannoudis P. Molecular aspects of fracture healing: which are the important molecules? Injury. 2007;38(Suppl 1):S11–25.CrossRefGoogle Scholar
  15. 15.
    Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem. 2003;88(5):873–84.CrossRefGoogle Scholar
  16. 16.
    Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent C, Papapoulos SE, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002;143(4):1545–53.CrossRefGoogle Scholar
  17. 17.
    Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J, Niehrs C. Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature. 1999;401(6752):480–5.CrossRefGoogle Scholar
  18. 18.
    Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, ten Dijke P. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature. 1997;389(6651):631–5.CrossRefGoogle Scholar
  19. 19.
    Bai S, Shi X, Yang X, Cao X. Smad6 as a transcriptional corepressor. J Biol Chem. 2000;275(12):8267–70.CrossRefGoogle Scholar
  20. 20.
    Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res. 1998;355:S41–55.CrossRefGoogle Scholar
  21. 21.
    Giannoudis PV, Einhorn TA, Marsh D. Fracture healing: the diamond concept. Injury. 2007;38(Suppl 4):S3–6.CrossRefGoogle Scholar
  22. 22.
    Zhuang H, Wang W, Tahernia AD, Levitz CL, Luchetti WT, Brighton CT. Mechanical strain-induced proliferation of osteoblastic cells parallels increased TGF-beta 1 mRNA. Biochem Biophys Res Commun. 1996;229(2):449–53.CrossRefGoogle Scholar
  23. 23.
    Chiquet M. Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 1999;18(5):417–26.CrossRefGoogle Scholar
  24. 24.
    Kershaw CJ, Cunningham JL, Kenwright J. Tibial external fixation, weight bearing, and fracture movement. Clin Orthop Relat Res. 1993;293:28–36.Google Scholar
  25. 25.
    Kwong FN, Harris MB. Recent developments in the biology of fracture repair. J Am Acad Orthop Surg. 2008;16(11):619–25.CrossRefGoogle Scholar
  26. 26.
    Reddi AH, Wientroub S, Muthukumaran. Biologic principles of bone induction. Orthop Clin North Am. 1987;18:207–12.PubMedGoogle Scholar
  27. 27.
    Chalmers J. Transplantation immunity in bone homografting. J Bone Joint Surg (Br). 1959;41:160–78.CrossRefGoogle Scholar
  28. 28.
    D'Antonio JA, Capello WN, Borden LS, Bargar WL, Bierbaum BF, Boettcher WG, Steinberg ME, Stulberg SH, Wedge JH. Classification and management of acetabular abnormalities in total hip arthroplasty. Clin Orthop Relat Res. 1989;243:126–37.Google Scholar
  29. 29.
    Gross AE, Duncan CP, Garbuz D, Mohamed EMZ. Revision arthroplasty of the acetabulum in association with loss of bone stock. J Bone Joint Surg Am. 1998;80(3):440–51.CrossRefGoogle Scholar
  30. 30.
    Enneking WF, Mindell E. Observations on massive retrieved human allografts. J Bone Joint Surg Am. 1991;73:1123–42.CrossRefGoogle Scholar
  31. 31.
    Waddell BS, Boettner F, Gonzalez Della Valle A. Favorable early results of impaction bone grafting with reinforcement mesh for the treatment of Paprosky 3B acetabular defects. J Arthroplasty. 2017;32:919–23.CrossRefGoogle Scholar
  32. 32.
    Colo E, Rijnen WHC, Schreurs BW. The biological approach in acetabular revision surgery: impaction bone grafting and a cemented cup. Hip Int. 2015;25(4):361–7.CrossRefGoogle Scholar
  33. 33.
    Pierannunzii L, Zagra L. Bone grafts, bone graft extenders, substitutes and enhancers for acetabular reconstruction revision total hip arthroplasty. EFORT Open Rev. 2017;1(12):431–9.CrossRefGoogle Scholar
  34. 34.
    Stevenson S, Li XQ, Martin B. The fate of cancellous and corticl bone after transplantation of fresh and frozen tissue-antigen-matched and mismatched osteocondral allograft in dogs. J Bone Joint Surg Am. 1991;73:1143–56.CrossRefGoogle Scholar
  35. 35.
    Hooten JP Jr, Engh CA Jr, Engh CA. Failure of structural acetabular allografts in cementless revision hip arthroplasty. J Bone Joint Surg (Br). 1994;76(3):419–22.CrossRefGoogle Scholar
  36. 36.
    Heekin RD, Engh CA, Vinh T. Morselized allograft in acetabular reconstruction. A postmortem retrieval analysis. Clin Orthop Relat Res. 1995;319:184–90.Google Scholar
  37. 37.
    Gie GA, Linder L, Ling RSM, Simon J-P, Slooff TJJH, Timperley AJ. Impacted cancellous allografts and cement for revision total hip arthroplasty. J Bone Joint Surg (Br). 1993;75:14–21.CrossRefGoogle Scholar
  38. 38.
    Buma P, Lamerigts N, Schreurs BW, Gardeniers J, Versleyen D, Slooff TJ. Impacted graft incorporation after cemented acetabular revision. Histological evaluation in 8 patients. Acta Orthop Scand. 1996;67(6):536–40.CrossRefGoogle Scholar
  39. 39.
    Schimmel JW, Buma P, Versleyen D, Huiskes R, Slooff TJ. Acetabular reconstruction with impacted morselized cancellous allografts in cemented hip arthroplasty: a histological and biomechanical study on the goat. J Arthroplasty. 1998;13(4):438–48.CrossRefGoogle Scholar
  40. 40.
    van der Donk S, Buma P, Slooff TJ, Gardeniers JW, Schreurs BW. Incorporation of morselized bone grafts: a study of 24 acetabular biopsy specimens. Clin Orthop Relat Res. 2002;396:131–41.CrossRefGoogle Scholar
  41. 41.
    Schreurs BW, Buma P, Huiskes R, Slagter JL, Slooff TJ. Morselized allografts for fixation of the hip prosthesis femoral component: a mechanical and histological study in the goat. Acta Orthop Scand. 1994;65:267–75.CrossRefGoogle Scholar
  42. 42.
    Board TN, Rooney P, Kay PR. Strain imparted during impaction grafting may contribute to bony incorporation; An in vitro study of the release of BMP-7 from allograft. J Bone Joint Surg (Br). 2008;90:821–4.CrossRefGoogle Scholar
  43. 43.
    Ullmark G, Sörensen J, Nilsson O. Bone healing of severe acetabular defects after revision arthroplasty. A clinical positron emission tomography study of 7 cases. Acta Orthop. 2009;80:179–83.CrossRefGoogle Scholar
  44. 44.
    Le Nihouannen D, Daculsi G, Saffarzadeh A, Gauthier O, Delplace S, Pilet P, Layrolle P. Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles. Bone. 2005;36:1086–93.CrossRefGoogle Scholar
  45. 45.
    Bolder SB, Verdonschot N, Schreurs BW, Buma P. The initial stability of cemented acetabular cups can be augmented by mixing morsellized bone grafts with tricalciumphosphate/hydroxyapatite particles in bone impaction grafting. J Arthroplasty. 2003;18(8):1056–63.CrossRefGoogle Scholar
  46. 46.
    Whitehouse MR, Dacombe PJ, Webb JC, Blom AW. Impaction grafting of the acetabulum with ceramic bone graft substitute mixed with femoral head allograft: high survivorship in 43 patients with a median follow-up of 7 years: a follow-up report. Acta Orthop. 2013;84:365–70.CrossRefGoogle Scholar
  47. 47.
    Hamadouche M, Karoubi M, Dumaine V, Courpied JP. The use of fibrebased demineralised bone matrix in major acetabular reconstruction: surgical technique and preliminary results. Int Orthop. 2011;35:283–8.CrossRefGoogle Scholar
  48. 48.
    Hernigou P, Pariat J, Queinnec S, Homma Y, Flouzat Lachaniette CH, Chevallier N, Rouard H. Supercharging irradiated allografts with mesenchymal stem cells improves acetabular bone grafting in revision arthroplasty. Int Orthop. 2014;38:1913–21.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Eduardo García-Rey
    • 1
  • Enrique Gómez-Barrena
    • 1
  1. 1.Orthopaedic Surgery Department, Hospital Universitario La Paz-IdiPazMadridSpain

Personalised recommendations