Advertisement

Ultrasound as Mechanical Force

  • Jean-Marc Lévêque
  • Giancarlo Cravotto
  • François Delattre
  • Pedro Cintas
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Acoustic cavitation invariably combines chemical and mechanical effects that stem from bubble collapse in liquids. Strategies to harness preferentially the role of mechanochemistry in sonochemistry have been invented and developed in recent years, demonstrating enormous versatility from synthesis and catalysis to biology and analytical monitoring. Most cases involve polymers containing weak bonds that can be fragmented by sonication. The effects are dependent largely on both the nature of substrates and the strength of cavitational collapse.

References

  1. Berkowski KL, Potisek SL, Hickenboth CR, Moore JS (2005) Ultrasound-induced site-specific cleavage of azo-functionalized poly(ethyleneglycol). Macromolecules 38:8975–8978CrossRefGoogle Scholar
  2. Boldyrev VV (1995) Mechanochemistry and sonochemistry. Ultrason Sonochem 2:S143–S145CrossRefGoogle Scholar
  3. Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52CrossRefGoogle Scholar
  4. Chen YL, Spiering AJH, Karthikeyan S, Peters GWM, Meijer EW, Sijbesma RP (2012) Mechanically induced chemiluminescence from polymers incorporating a 1,2-dioxetane unit in the main chain. Nat Chem 4:559–562CrossRefGoogle Scholar
  5. Chen ZX, Mercer JAM, Zhu XL, Romaniuk JAH, Pfattner R, Cegelski L, Martinez TJ, Burns NZ, Xia Y (2017) Mechanochemical unzipping of insulating polyladderene to semiconducting polyacetylene. Science 357:475–478CrossRefGoogle Scholar
  6. Cintas P, Cravotto G, Barge A, Martina K (2015) Interplay between mechanochemistry and sonochemistry. In: Boulatov R (ed) Polymer mechanochemistry, Top Curr Chem, vol 369. Springer, Heidelberg, pp 239–284CrossRefGoogle Scholar
  7. Cravotto G, Gaudino EC, Cintas P (2013) On the mechanochemical activation by ultrasound. Chem Soc Rev 42:7521–7534CrossRefGoogle Scholar
  8. Davis DA, Hamilton A, Yang J, Cremar LD, Gough DV, Potisek SL, Ong MT, Braun PV, Martinez TJ, White SR, Moore JS, Sottos NR (2009) Force-induced activation of covalent bonds in mechanoresponsive polymeric materials. Nature 459:68–72CrossRefGoogle Scholar
  9. Diesendruck C, Steinberg BD, Sugai N, Silberstein MN, Sottos NR, White SR, Braun PV, Moore JS (2012) Proton-coupled mechanochemical transduction: a mechanogenerated acid. J Am Chem Soc 134:12446–12449CrossRefGoogle Scholar
  10. Encina MV, Sarasúa M, Gargallo L, Radic D (1980) Ultrasonic degradation of polyvinylpyrrolidone: effect of peroxide linkages. J Polym Sci Polym Lett Ed 18:757–760CrossRefGoogle Scholar
  11. Fernández-Bertran JF (1999) Mechanochemistry: an overview. Pure Appl Chem 71:581–586CrossRefGoogle Scholar
  12. Garcia-Manyes S, Beedle AEM (2017) Steering chemical reactions with force. Nat Rev Chem 1:0083CrossRefGoogle Scholar
  13. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413:194–202CrossRefGoogle Scholar
  14. Groote R, Jakobs RTM, Sijbesma RP (2012) Performance of mechanochemically activated catalysts is enhanced by suppression of the thermal effects of ultrasound. ACS Macro Lett 1:1012–1015CrossRefGoogle Scholar
  15. Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR (2007) Biasing reaction pathways with mechanical force. Nature 446:423–427CrossRefGoogle Scholar
  16. Kaupp G (2009) Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11:388–403CrossRefGoogle Scholar
  17. Lavalle P, Boulmedais F, Schaaf P, Jierry L (2016) Soft-mechanochemistry: mechanochemistry inspired by nature. Langmuir 32:7265–7276CrossRefGoogle Scholar
  18. Lenhardt JM, Black AL, Craig SL (2009) gem-Dichlorocyclopropanes as abundant and efficient mechanophores in polybutadiene copolymers under mechanical stress. J Am Chem Soc 131:10818–10819CrossRefGoogle Scholar
  19. Lenhardt JM, Ong MT, Choe R, Evenhuis CR, Martinez TJ, Craig SL (2010) Trapping a diradical transition state by mechanochemical polymer extension. Science 329:1057–1060CrossRefGoogle Scholar
  20. Levy A, Wang F, Lang A, Galant O, Diesendruck CE (2017) Intramolecular cross-linking: addressing mechanochemistry with a bioinspired approach. Angew Chem Int Ed 56:6431–6434CrossRefGoogle Scholar
  21. Li J, Nagamani C, Moore JS (2015) Polymer mechanochemistry: from destructive to productive. Acc Chem Res 48:2181–2190CrossRefGoogle Scholar
  22. Mason TJ (1991) Practical sonochemistry. User’s guide to applications in chemistry and chemical engineering, ch 1. Ellis Horwood Ltd, Chichester, p 23Google Scholar
  23. Mason TJ, Lorimer JP (2002) Applied sonochemistry. The uses of power ultrasound in chemistry and processing, ch 3. Wiley-VCH, Weinheim, pp 79–81Google Scholar
  24. Mason TJ, Cobley AJ, Graves JE, Morgan D (2011) New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason Sonochem 18:226–230CrossRefGoogle Scholar
  25. May PA, Munaretto NF, Hamoy MB, Robb MJ, Moore JS (2016) Is molecular weight or degree of polymerization a better descriptor of ultrasound-induced mechanochemical transduction? ACS Macro Lett 5:177–180CrossRefGoogle Scholar
  26. Melville HW, Murray AJR (1950) The ultrasonic degradation of polymers. Trans Faraday Soc 46:996–1009CrossRefGoogle Scholar
  27. Nguyen TQ, Liang OZ, Kausch HH (1997) Kinetics of ultrasonic and transient elongational flow degradation: a comparative study. Polymer 38:3783–3793CrossRefGoogle Scholar
  28. Nguyen TT, Asakura Y, Koda S, Yasuda K (2017) Dependence of cavitation, chemical effect and mechanical effect thresholds on ultrasonic frequency. Ultrason Sonochem 39:301–306CrossRefGoogle Scholar
  29. Piermattei A, Karthikeyan S, Sijbesma RP (2009) Activating catalysts with mechanical force. Nat Chem 1:133–137CrossRefGoogle Scholar
  30. Price GJ, Smith PF (1993) Ultrasonic degradation of polymer solutions: 2. The effect of temperature, ultrasound intensity and dissolved gases on polystyrene in toluene. Polymer 34:4111–4117CrossRefGoogle Scholar
  31. Ribas-Arino J, Marx D (2012) Covalent mechanochemistry: theoretical concepts and computational tools with applications to molecular nanomechanics. Chem Rev 112:5412–5487CrossRefGoogle Scholar
  32. Sohma J (1989) Mechanochemistry of polymers. Prog Polym Sci 14:451–596CrossRefGoogle Scholar
  33. Stauch T, Dreuw A (2016) Advances in quantum mechanochemistry: electronic structure methods and force analysis. Chem Rev 116:14137–14180CrossRefGoogle Scholar
  34. Teo BM, Grieser F, Ashokkumar M (2012) Applications of ultrasound to polymer synthesis. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound. Sonochemistry for sustainability, ch 19. CRC Press-Taylor & Francis Group, Boca Raton, pp 475–500Google Scholar
  35. Thomas JR (1959) Sonic degradation of high polymers in solution. J Phys Chem 63:1725–1729CrossRefGoogle Scholar
  36. Zhang H, Lin Y, Xu Y, Weng W (2015) Mechanochemistry of topological complex polymer systems. In: Boulatov R (ed) Polymer mechanochemistry, Top Curr Chem, vol 369. Springer, Heidelberg, pp 135–208CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Marc Lévêque
    • 1
  • Giancarlo Cravotto
    • 2
  • François Delattre
    • 3
  • Pedro Cintas
    • 4
  1. 1.LCME/SCeMUniversité de Savoie Mont BlancParisFrance
  2. 2.Dipartimento di Scienza e Tecnologia del FarmacoUniversitá di TorinoTurinItaly
  3. 3.Departement de ChimieUnité de Chimie Environnementale et Interactions sur le VivantDunkerqueFrance
  4. 4.Departamento Química Orgánica e Inorgánica, Facultad de CienciasUniversity of ExtremaduraBadajozSpain

Personalised recommendations