Advertisement

Efficient Organic Synthesis: What Ultrasound Makes Easier

  • Jean-Marc Lévêque
  • Giancarlo Cravotto
  • François Delattre
  • Pedro Cintas
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

The application of ultrasound waves to induce and enhance chemical reactivity dates back to the pioneering studies by Richards and Loomis in the late 1920s. The long journey, now entering the twenty-first century, has been accompanied by decades of low and high research activity. But arguably, the marriage between synthesis, organic synthesis in particular, and sonochemistry has been especially fruitful from the 1980s onwards. We now realize the pluses conveyed by sonication, in terms of efficiency, acceleration and selectivity. Mechanistic switching and/or different product distribution relative to non-irradiated conditions also represent salient features observed frequently in sonochemical reactions. This chapter summarizes a series of fundamental ideas in organic sonochemistry and introduces the subject within the framework of green chemistry and sustainability. Representative examples gathered in recent literature help to appreciate the added value of sonochemistry as tool.

References

  1. Ablajan K, Kamil W, Tuoheti A, Wan-Fu S (2012) An efficient three component one-pot synthesis of 5-amino-7-aryl-7,8-dihydroxy-[1,2,4]-triazolo[4,3-a]-pyrimidine-6-carbonitriles. Molecules 17:1860–1869CrossRefGoogle Scholar
  2. Andraos J (2016) Complete green metrics evaluation of various routes to methyl methacrylate according to material and energy consumptions and environmental and safety impacts: test case from the chemical industry. ACS Sustain Chem Eng 4:312–323CrossRefGoogle Scholar
  3. Asami R, Fuchigami T, Atobe M (2008) Development of an anodic substitution reaction system using acoustic emulsification. Chem Commun 244–246Google Scholar
  4. Atobe M, Tateno H, Matsumura Y (2018) Applications of flow microreactors in electrosynthetic processes. Chem Rev 118:4541–4572CrossRefGoogle Scholar
  5. Banerjee B (2017a) Recent developments on ultrasound assisted catalyst-free organic synthesis. Ultrason Sonochem 35:1–14CrossRefGoogle Scholar
  6. Banerjee B (2017b) Recent developments on ultrasound-assisted one-pot multicomponent synthesis of biologically relevant heterocycles. Ultrason Sonochem 35:15–35CrossRefGoogle Scholar
  7. Braghiroli FL, Barboza JCS, Serra AA (2006) Sonochemical epoxidation of cyclohexene in RCN/H2O2 system. Ultrason Sonochem 13:443–445CrossRefGoogle Scholar
  8. Brochette-Lemoine S, Joannard D, Descotes G, Bouchu A, Queneau Y (1999) Sonocatalysis of the TEMPO-mediated oxidation of glucosides. J Mol Catal A: Chem 150:31–36CrossRefGoogle Scholar
  9. Brochette-Lemoine S, Trombotto S, Joannard D, Descotes G, Bouchu A, Queneau Y (2000) Ultrasound in carbohydrate chemistry: sonophysical glucose oligomerisation and sonocatalysed sucrose oxidation. Ultrason Sonochem 7:157–161CrossRefGoogle Scholar
  10. Bruckmann A, Krebs A, Bolm C (2008) Organocatalytic reactions: effects of ball milling, microwave and ultrasound irradiation. Green Chem 10:1131–1141CrossRefGoogle Scholar
  11. Bujak P, Bartczak P, Polanski J (2012) Highly efficient room-temperature oxidation of cyclohexene and d-glucose over nanogold Au/SiO2 in water. J Catal 295:15–21CrossRefGoogle Scholar
  12. Cella R, Stefani H (2009) Ultrasound in heterocycles chemistry. Tetrahedron 65:2619–2641CrossRefGoogle Scholar
  13. Chatel G, Goux-Henry C, Mirabaud A, Rossi T, Kardos N, Andrioletti B, Draye M (2012) H2O2/NaHCO3-mediated enantioselective epoxidation of olefins in NTf2-based ionic liquids and under ultrasound. J Catal 291:127–132CrossRefGoogle Scholar
  14. Chatel G, MacFarlane DR (2014) Ionic liquids and ultrasound in combination: synergies and challenges. Chem Soc Rev 43:8132–8149CrossRefGoogle Scholar
  15. Chatel G, De Oliveira Vigier K, Jérôme F (2014) Sonochemistry: what potential for conversion of lignocellulosic biomass into platform chemicals? Chemsuschem 7:2774–2787CrossRefGoogle Scholar
  16. Chatel G (2017) Sonochemistry. New opportunities for green chemistry (Chap. 5). World Scientific Publishing, Singapore, pp 59–145Google Scholar
  17. Chen D, Sharma SK, Mudhoo A (2011) Handbook on applications of ultrasound. Sonochemistry for sustainability. CRC Press, Boca Raton, FLGoogle Scholar
  18. Chermahini AN, Teimouri A, Momenbeik F, Zarei A, Dalimarab Z, Ghaedi A, Roosta M (2010) Clay-catalyzed synthesis of 5-substituted-1-H-tetrazoles. J Heterocycl Chem 47:913–922CrossRefGoogle Scholar
  19. Cintas P, Barge A, Tagliapietra S, Boffa L, Cravotto G (2010) Alkyne-azide click reaction catalyzed by metallic copper under ultrasound. Nat Protocol 5:607–611CrossRefGoogle Scholar
  20. Cintas P, Palmisano G, Cravotto G (2011) Power ultrasound in metal-assisted synthesis: from classical Barbier-like reactions to click chemistry. Ultrason Sonochem 18:836–841CrossRefGoogle Scholar
  21. Cintas P (2016) Ultrasound and green chemistry—further comments. Ultrason Sonochem 28:257–258CrossRefGoogle Scholar
  22. Constable DJC, Curzons AD, Cunningham VL (2002) Metrics to green chemistry: which are the best? Green Chem 4:521–527CrossRefGoogle Scholar
  23. Datta B, Pasha MA (2012) Glycine catalyzed convenient synthesis of 2-amino-4H-chromenes in aqueous medium under sonic condition. Ultrason Sonochem 19:725–728CrossRefGoogle Scholar
  24. Disselkamp RS, Judd KM, Hart TR, Peden CHF, Posakony GJ, Bond LJ (2004) A comparison between conventional and ultrasound-mediated heterogeneous catalysis: hydrogenation of 3-buten-ol aqueous solutions. J Catal 221:347–353CrossRefGoogle Scholar
  25. Domini CE, Álvarez MB, Silbestri GE, Cravotto G, Cintas P (2017) Merging metallic catalysts and sonication: a periodic table overview. Catalysts 7:121.  https://doi.org/10.3390/catal7040121CrossRefGoogle Scholar
  26. Et Taouil A, Lallemand F, Hallez L, Hihn JY (2010) Electropolymerization of pyrrole on oxidizable metal under high frequency ultrasound irradiation. Application of focused beam to a selective masking technique. Electrochim Acta 55:9137–9145CrossRefGoogle Scholar
  27. Et Taouil A, Lallemand F, Hihn JY, Melot JM, Blondeau-Patissier V, Lakard B (2011) Doping properties of PEDOT films electrosynthesized under high frequency ultrasound irradiation. Ultrason Sonochem 18:140–148CrossRefGoogle Scholar
  28. Fegade SL, Tremblay JP (2017) Misinterpretation of green chemistry. Ultrason Sonochem 37:686–687CrossRefGoogle Scholar
  29. Fitzpatrick DE, Battilocchio C, Ley SV (2016) Enabling technologies for the future of chemical synthesis. ACS Cent Sci 2:131–138CrossRefGoogle Scholar
  30. Fritze UF, von Delius M (2016) Dynamic disulfide metathesis induced by ultrasound. Chem Commun 52:6363–6366CrossRefGoogle Scholar
  31. Gallego-Juárez JA, Graff KF (2015) Power ultrasonics. Applications of high-intensity ultrasound. Elsevier, AmsterdamGoogle Scholar
  32. Gemoets HPL, Su Y, Shang M, Hessel V, Luque R, Noël T (2016) Liquid phase oxidation chemistry in continuous-flow microreactors. Chem Soc Rev 45:83–117CrossRefGoogle Scholar
  33. González-Paz RJ, Lluch C, Lligadas G, Ronda JC, Galià M, Cádiz V (2011) A green approach toward oleic- and undecylenic acid-derived polyurethanes. J Polym Sci A Polym Chem 49:2407–2416CrossRefGoogle Scholar
  34. Gronnow MJ, White RJ, Clark JH, Macquarrie DJ (2005) Energy efficiency in chemical reactions: a comparative study of different reaction techniques. Org Process Res Dev 9:516–518CrossRefGoogle Scholar
  35. Gułajski Ł, Śledź P, Lupa A, Grela K (2008) Olefin metathesis in water using acoustic emulsification. Green Chem 10:271–274CrossRefGoogle Scholar
  36. Hessel V, Cravotto G, Fitzpatrick P, Patil BS, Lang J, Bonrath W (2013) Industrial applications of plasma, microwave and ultrasound techniques: nitrogen fixation and hydrogenation reactions. Chem Eng Process 71:19–30CrossRefGoogle Scholar
  37. Jaiswal PK, Sharma V, Prikhodko J, Mashevskaya IV, Chaudhary S (2017) “On water” ultrasound-assisted one-pot efficient synthesis of functionalized 2-oxo-benzo[1,4]oxazines: first application to the synthesis of anticancer indole alkaloid Cephalandole A. Tetrahedron Lett 58:2077–2083CrossRefGoogle Scholar
  38. Jiménez-González C, Constable DJC (2011) Green chemistry and engineering. A practical design approach. Wiley, New York, pp 79–101Google Scholar
  39. Jiménez-González C, Constable DJC, Ponder CS (2012) Evaluating the greenness of chemical processes and products in the pharmaceutical industry—a green metrics primer. Chem Soc Rev 41:1485–1498CrossRefGoogle Scholar
  40. Kamble S, Kumbhar A, Rashinkar G, Barge M, Salunkhe R (2012) Ultrasound promoted efficient and green synthesis of β-amino carbonyl compounds in aqueous hydrotropic medium. Ultrason Sonochem 19:812–815CrossRefGoogle Scholar
  41. Kanchithalaivan S, Sumesh RV, Kumar RR (2014) Ultrasound-assisted sequential multicomponent strategy for the combinatorial synthesis of novel comarin hybrids. ACS Comb Sci 16:566–572CrossRefGoogle Scholar
  42. Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115:11559–11624CrossRefGoogle Scholar
  43. Li CJ (2017) Exploration of new chemical reactivities for sustainable molecular transformations. Chem 1:423–437CrossRefGoogle Scholar
  44. Li JT, Yin Y, Sun MX (2010) An efficient one-pot synthesis of 2,3-epoxy-1,3-diaryl-1-propanone directly from acetophenones and aromatic aldehydes under ultrasound irradiation. Ultrason Sonochem 17:363–366CrossRefGoogle Scholar
  45. Luche JL (1998) Synthetic organic sonochemistry. Plenum Press, New YorkCrossRefGoogle Scholar
  46. Luche JL (1993) Sonochemistry. From experiment to theoretical considerations. In: Mason TJ (ed) Advances in sonochemistry, vol 3. JAI Press Ltd, London, pp 85–124Google Scholar
  47. Lupacchini M, Mascitti A, Giachi G, Tonucci L, d’Alessandro N, Martinez J, Colacino E (2017) Sonochemistry in non-conventional, green solvents or solvent-free reactions. Tetrahedron 73:609–653CrossRefGoogle Scholar
  48. Marzag H, Alaoui S, Amdouni H, Martin AR, Bougrin K, Benhida R (2015) Efficient and selective azidation of per-O-acetylated sugars using ultrasound activation: application to the one-pot synthesis of 1,2,3-triazole glycosides. New J Chem 39:5437–5444CrossRefGoogle Scholar
  49. Mitsudo K, Kurimoto Y, Yoshioka K, Suga S (2018) Miniaturization and combinatorial approach in organic electrochemistry. Chem Rev 118:5985–5999CrossRefGoogle Scholar
  50. Moeller KD (2018) Using physical organic chemistry to shape the course of electrochemical reactions. Chem Rev 118:4817–4833CrossRefGoogle Scholar
  51. Mojtahedi MM, Abaee MS (2011) Ultrasound applications in synthetic organic chemistry. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound. Sonochemistry for sustainability (Chap. 12). CRC Press, Boca Raton, FL, pp 281–321Google Scholar
  52. More PA, Shankarling GS (2017) Energy efficient Pfitzinger reaction: a novel strategy using a surfactant catalyst. New J Chem 41:12380–12383CrossRefGoogle Scholar
  53. Park JC, Kim AY, Kim JY, Park S, Park KH, Song H (2012) ZnO-CuO core-branch nanocatalysts for ultrasound-assisted azide-alkyne cycloaddition reactions. Chem Commun 48:8484–8486CrossRefGoogle Scholar
  54. Pollet BG, Hihn JY (2011) Sonoelectrochemistry: from theory to applications. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound. Sonochemistry for sustainability (Chap. 24). CRC Press, Boca Raton, FL, pp 623–657Google Scholar
  55. Rinsant D, Chatel G, Jérôme F (2014) Efficient and selective oxidation of D-glucose into gluconic acid under low-frequency ultrasonic irradiation. ChemCatChem 6:3355–3359CrossRefGoogle Scholar
  56. Rogozinska M, Adamkiewicz A, Mlynarski J (2011) Efficient “on water” organocatalytic protocol for the synthesis of optically pure warfarin anticoagulant. Green Chem 13:1155–1157CrossRefGoogle Scholar
  57. Santos RG, Xavier NM, Bordado JC, Rauter AP (2013) Efficient and first regio- and stereoselective direct C-glycosylation of a flavanone catalyzed by Pr(OTf)3 under conventional heating or ultrasound irradiation. Eur J Org Chem 1441–1447CrossRefGoogle Scholar
  58. Sari O, Hamada M, Roy V, Nolan SP, Agrofoglio LA (2013) The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis. Org Lett 15:4390–4393CrossRefGoogle Scholar
  59. Shingare MS, Shingate BB (2011) Ultrasound in synthetic applications and organic chemistry. In: Chen D, Sharma SK, Mudhoo A (eds) Handbook on applications of ultrasound. Sonochemistry for sustainability (Chap. 10). CRC Press, Boca Raton, FL, pp 213–261Google Scholar
  60. Skinner EK, Whiffin FM, Price GJ (2012) Room temperature sonochemical initiation of thiol-ene reactions. Chem Commun 48:6800–6802CrossRefGoogle Scholar
  61. Sunaga T, Atobe M, Inagi S, Fuchigami T (2009) Highly efficient and selective electrochemical fluorination of organosulfur compounds in Et3N·3HF ionic liquid under ultrasonication. Chem Commun 956–958Google Scholar
  62. Tabasso S, Carnaroglio D, Calcio Gaudino E, Cravotto G (2015) Microwave, ultrasound and ball mill procedures for bio-waste valorisation. Green Chem 17:684–693CrossRefGoogle Scholar
  63. Tagliapietra S, Calcio Gaudino E, Cravotto G (2015) The use of power ultrasound for organic synthesis in green chemistry. In: Gallego-Juárez JA, Graff KF (eds) Power ultrasonics. Applications of high-intensity ultrasound (Chap. 33). Elsevier, Amsterdam, pp 997–1022Google Scholar
  64. Toukoniitty B, Kuusisto J, Mikkola JP, Salmi T, Murzin DY (2005) Effect of ultrasound on catalytic hydrogenation of D-fructose to D-mannitol. Ind Eng Chem Res 44:9370–9375CrossRefGoogle Scholar
  65. Tripathi B, Paniwnyk L, Cherkasov N, Ibhadon AO, Lana-Villareal T, Gómez R (2015) Ultrasound-assisted selective hydrogenation of C-5 acetylene alcohols with Lindlar catalysts. Ultrason Sonochem 26:445–451CrossRefGoogle Scholar
  66. Wadhawan JD, Marken F, Compton RG, Bull SD, Davies SG (2001) Sono-emulsion electrosynthesis: electrode-insensitive Kolbe reactions. Chem Commun 87–88Google Scholar
  67. Wet-Osot S, Duangkamol C, Phakhodee W, Pattarawarapan M (2016) Ultrasound-assisted solvent-free parallel synthesis of 3-arylcoumarins using N-acylbenzotriazoles. ACS Comb Sci 18:279–282CrossRefGoogle Scholar
  68. Wood RJ, Lee J, Bussemaker MJ (2017) A parametric review of sonochemistry: control and augmentation of sonochemical activity in aqueous solutions. Ultrason Sonochem 38:351–370CrossRefGoogle Scholar
  69. Yan M, Kawamata Y, Baran PS (2017) Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem Rev 117:13230–13319CrossRefGoogle Scholar
  70. Yu SJ, Zhu C, Bian Q, Cui C, Du XJ, Li ZM, Zhao WG (2014) Novel ultrasound-promoted parallel synthesis of trifluoroatrolactamide library via a one-pot Passerini/hydrolysis reaction sequence and their fungicidal activities. ACS Comb Sci 16:17–23CrossRefGoogle Scholar
  71. Zhang P, Yang M, Lu X (2007) Epoxidation of cyclohexene with oxygen in ultrasound airlift loop reactor. Chin J Chem Eng 15:196–199CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jean-Marc Lévêque
    • 1
  • Giancarlo Cravotto
    • 2
  • François Delattre
    • 3
  • Pedro Cintas
    • 4
  1. 1.LCME/SCeMUniversité de Savoie Mont BlancParisFrance
  2. 2.Dipartimento di Scienza e Tecnologia del FarmacoUniversitá di TorinoTurinItaly
  3. 3.Departement de ChimieUnité de Chimie Environnementale et Interactions sur le VivantDunkerqueFrance
  4. 4.Departamento Química Orgánica e Inorgánica, Facultad de CienciasUniversity of ExtremaduraBadajozSpain

Personalised recommendations