Advertisement

Coherent Hemodynamics Spectroscopy: A New Technique to Characterize the Dynamics of Blood Perfusion and Oxygenation in Tissue

  • Sergio Fantini
  • Kristen T. Tgavalekos
  • Xuan Zang
  • Angelo Sassaroli
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 218)

Abstract

Hemodynamic-based neuroimaging techniques such as near-infrared spectroscopy (NIRS) and functional magnetic resonance imaging (fMRI) are directly sensitive to the blood volume fraction and oxygen saturation of blood in the probed tissue. The ability to translate such hemodynamic and oxygenation measurements into physiological quantities is critically important to enhance the effectiveness of NIRS and fMRI in a broad range of applications aimed at medical diagnostic or functional assessment. Coherent hemodynamics spectroscopy (CHS) is a novel technique based on the measurement (with techniques such as NIRS or fMRI) and quantitative analysis (with a novel mathematical model) of coherent hemodynamics in living tissues. Methods to induce coherent hemodynamics in humans include controlled perturbations to the mean arterial pressure by paced breathing or by timed inflations of pneumatic cuffs wrapped around the subject’s legs. A mathematical model recently outlined translates coherent hemodynamics into physiological measures of the capillary and venous blood transit times, cerebral autoregulation, and cerebral blood flow. A typical method to analyze the optical signal from non-invasive NIRS measurements of the human brain is the modified Beer-Lambert law (mBLL), which does not allow the discrimination of hemodynamics taking place in the scalp and skull from those occurring in the brain cortex. A hybrid method using continuous wave NIRS (with the mBLL) together with frequency-domain NIRS (with a two-layer diffusion model) was successfully used to discriminate oscillatory hemodynamics in the superficial (extracerebral) tissue layer from that in deeper, cerebral tissue.

Keywords

Near-infrared spectroscopy Diffuse optics Functional imaging Hemodynamics Autoregulation Cerebral blood flow 

Notes

Acknowledgements

This research is supported by the US National Institutes of Health (Grants no. R01-NS095334 and R21-EB020347).

References

  1. 1.
    R.B. Buxton, L.R. Frank, A model of the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J. Cereb. Blood Flow Metab. 17, 64–72 (1997)CrossRefGoogle Scholar
  2. 2.
    J.B. Mandeville, J.J.A. Marota, C. Ayata, G. Zaharchuk, M.A. Moskowitz, B.R. Rosen, R.M. Weisskoff, Evidence of a cerebrovascular postarteriole windkessel with delayed compliance. J. Cereb. Blood Flow Metab. 19, 679–689 (1999)CrossRefGoogle Scholar
  3. 3.
    M. Ferrari, V. Quaresima, A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63, 921–935 (2012)CrossRefGoogle Scholar
  4. 4.
    F. Scholkmann, S. Kleiser, A.J. Metz, R. Zimmermann, J.M. Pavia, U. Wolf, M. Wolf, A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage 85, 6–27 (2014)CrossRefGoogle Scholar
  5. 5.
    A. Torricelli, D. Contini, A. Pifferi, M. Caffini, R. Re, L. Zucchelli, L. Spinelli, Time domain functional NIRS imaging for human brain mapping. NeuroImage 85, 28–50 (2014)CrossRefGoogle Scholar
  6. 6.
    M. Smith, Shedding light on the adult brain: a review of the clinical applications of near-infrared spectroscopy. Philos. Trans. R. Soc. A 369, 4452–4469 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    A. Casati, G. Fanelli, P. Pietropaoli, R. Tufano, G. Danelli, G. Fierro, G. De Cosmo, G. Servillo, Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth. Analg. 101, 740–747 (2005)CrossRefGoogle Scholar
  8. 8.
    M.M. Tisdall, I. Tachtsidis, T.S. Leung, C.E. Elwell, M. Smith, Increase in cerebral aerobic metabolism by normobaric hyperoxia after traumatic brain injury. J. Neurosurg. 109, 424–432 (2008)CrossRefGoogle Scholar
  9. 9.
    S.R. Leal-Noval, A. Cayuela, V. Arellano-Orden, A. Marin-Caraballos, V. Padilla, C. Ferrándiz-Millón, Y. Corcia, C. García-Alfaro, R. Amaya-Villar, F. Murillo-Cabezas, Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intens. Care Med. 36, 1309–1317 (2010)CrossRefGoogle Scholar
  10. 10.
    F. Fabbri, M.E. Henry, P.F. Renshaw, S. Nadgir, B.L. Ehrenberg, M.A. Franceschini, S. Fantini, Bilateral near-infrared monitoring of the cerebral concentration and oxygen saturation of hemoglobin during right unilateral electro-convulsive therapy. Brain Res. 992, 193–204 (2003)CrossRefGoogle Scholar
  11. 11.
    V. Toronov, A. Webb, J.H. Choi, M. Wolf, L. Safonova, U. Wolf, E. Gratton, Study of local cerebral hemodynamics by frequency-domain near-infrared spectroscopy and correlation with simultaneously acquired functional magnetic resonance imaging. Opt. Express 9, 417–427 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    A.M. Siegel, J.P. Culver, J.B. Mandeville, D.A. Boas, Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation. Phys. Med. Biol. 48, 1391–1403 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Sassaroli, B. deB. Frederick, Y. Tong, P.F. Renshaw, S. Fantini, Spatially weighted BOLD signal for comparison of functional magnetic resonance imaging and near-infrared imaging of the brain. NeuroImage 33, 505–514 (2006)CrossRefGoogle Scholar
  14. 14.
    X. Cui, S. Bray, D.M. Bryant, G.H. Glover, A.L. Reiss, A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage 54, 2808–2821 (2011)CrossRefGoogle Scholar
  15. 15.
    T.J. Huppert, M.S. Allen, H. Benav, P.B. Jones, D.A. Boas, A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation. J. Cereb. Blood Flow Metab. 27, 1262–1279 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Banaji, A. Mallet, C.E. Elwell, P. Nicholls, C.E. Cooper, A model of brain circulation and metabolism: NIRS signal changes during physiological challenges. PLoS Comput. Biol. 4, e1000212 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    D.A. Boas, S.R. Jones, A. Devor, T.J. Huppert, A.M. Dale, A vascular anatomical network model of the spatio-temporal response to brain activation. NeuroImage 40, 1116–1129 (2008)CrossRefGoogle Scholar
  18. 18.
    S.G. Diamond, K.L. Perdue, D.A. Boas, A cerebrovascular response model for functional neuroimaging including cerebral autoregulation. Math. Biosci. 220, 102–117 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    S. Fantini, Dynamic model for the tissue concentration and oxygen saturation of hemoglobin in relation to blood volume, flow velocity, and oxygen consumption: implications for functional neuroimaging and coherent hemodynamics spectroscopy (CHS). NeuroImage 85, 202–221 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Fantini, A new hemodynamic model shows that temporal perturbations of cerebral blood flow and metabolic rate of oxygen cannot be measured individually using functional near-infrared spectroscopy. Physiol. Meas. 35, N1–N9 (2014)CrossRefGoogle Scholar
  21. 21.
    D.T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, J. Wyatt, Estimation of optical path length through tissue from direct time of flight measurements. Phys. Med. Biol. 33, 1433–1442 (1988)CrossRefGoogle Scholar
  22. 22.
    A. Sassaroli, S. Fantini, Comment on the modified Beer-Lambert law for scattering media. Phys. Med. Biol. 49, N1–N3 (2004)CrossRefGoogle Scholar
  23. 23.
    J. Choi, M. Wolf, V. Toronov, U. Wolf, C. Polzonetti, D. Hueber, L.P. Safonova, R. Gupta, A. Michalos, W. Mantulin, E. Gratton, Noninvasive determination of the optical properties of adult brain: near-infrared spectroscopy approach. J. Biomed. Opt. 9, 221–229 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    L. Gagnon, C. Gauthier, R.D. Hoge, F. Lesage, J. Selb, D.A. Boas, Double-layer estimation of intra- and extracerebral hemoglobin concentration with a time-resolved system. J. Biomed. Opt. 13, 054019 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    B. Hallacoglu, A. Sassaroli, S. Fantini, Optical characterization of two-layered turbid media for non-invasive, absolute oximetry in cerebral and extracerebral tissue. PLoS ONE 8, e64095 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    R.B. Saager, A.J. Berger, Direct characterization and removal of interfering absorption trends in two-layer turbid media. J. Opt. Soc. Am. A 22, 1874–1882 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    Q. Zhang, G.E. Strangman, G. Ganis, Adaptive filtering to reduce global interference in non-invasive NIRS measures of brain activation: how well and when does it work? NeuroImage 45, 788–794 (2009)CrossRefGoogle Scholar
  28. 28.
    L. Gagnon, K. Perdue, D.N. Greve, D. Goldenholz, G. Kaskhedikar, D.A. Boas, Improved recovery of the hemodynamic response in diffuse optical imaging using short optode separations and state-space modeling. NeuroImage 56, 1362–1371 (2011)CrossRefGoogle Scholar
  29. 29.
    F. Scarpa, S. Brigadoi, S. Cutini, P. Scatturin, M. Zorzi, R. Dell’Acqua, G. Sparacino, A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements. NeuroImage 72, 106–119 (2013)CrossRefGoogle Scholar
  30. 30.
    F. Zheng, A. Sassaroli, S. Fantini, Phasor representation of oxy- and deoxyhemoglobin concentrations: what is the meaning of out-of-phase oscillations as measured by near-infrared spectroscopy? J. Biomed. Opt. 15, 040512 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    J.M. Kainerstorfer, A. Sassaroli, S. Fantini, Optical oximetry of volume-oscillating vascular compartments: contributions from oscillatory blood flow. J. Biomed. Opt. 21, 101408 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    M. Reinhard, E. Wehrle-Wieland, D. Grabiak, M. Roth, B. Guschlbauer, J. Timmer, C. Weiller, A. Hetzel, Oscillatory cerebral hemodynamics: the macro- vs. microvascular level. J. Neurol. Sci. 250, 103–109 (2006)CrossRefGoogle Scholar
  33. 33.
    M.L. Pierro, J.M. Kainerstorfer, A. Civiletto, D.E. Wiener, A. Sassaroli, B. Hallacoglu, S. Fantini, Reduced speed of microvascular blood flow in hemodialysis patients versus healthy controls: a coherent hemodynamics spectroscopy study. J. Biomed. Opt. 19, 026005 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    J.M. Kainerstorfer, A. Sassaroli, K.T. Tgavalekos, S. Fantini, Cerebral autoregulation in the microvasculature measured with near-infrared spectroscopy. J. Cereb. Blood Flow Metab. 35, 959–966 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Fantini, A. Sassaroli, J.M. Kainerstorfer, K.T. Tgavalekos, X. Zang, Non-invasive assessment of cerebral microcirculation with diffuse optics and coherent hemodynamics spectroscopy. Proc. SPIE 9690, 96900S (2016)ADSCrossRefGoogle Scholar
  36. 36.
    G. Alexandrakis, D.R. Busch, G.W. Faris, M.S. Patterson, Determination of the optical properties of two-layer turbid media by use of a frequency-domain hybrid Monte Carlo diffusion model. Appl. Opt. 40, 3810–3821 (2001)ADSCrossRefGoogle Scholar
  37. 37.
    T.H. Pham, T. Spott, L.O. Svaasand, B.J. Tromberg, Quantifying the properties of two layer turbid media with frequency-domain diffuse reflectance. Appl. Opt. 39, 4733–4745 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    F. Martelli, A. Sassaroli, S. Del Bianco, Y. Yamada, G. Zaccanti, Solution of the time-dependent diffusion equation for layered diffusive media by the eigenfunction method. Phys. Rev. E 67, 056623 (2003)ADSMathSciNetCrossRefGoogle Scholar
  39. 39.
    J. Ripoll, V. Ntziachristos, J.P. Culver, D.N. Pattanayak, A.G. Yodh, M. Nieto-Vesperinas, Recovery of optical parameters in multiple-layered diffusive media: theory and experiments. J. Opt. Soc. Am. A 18, 821–830 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    A. Liemert, A. Kienle, Light diffusion in N-layered turbid media: frequency and time domains. J. Biomed. Opt. 15, 025002 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    S. Fantini, M.A. Franceschini, E. Gratton, Semi-infinite-geometry boundary problem for light migration in highly scattering media: a frequency-domain study in the diffusion approximation. J. Opt. Soc. Am. B 11, 2128–2138 (1994)ADSCrossRefGoogle Scholar
  42. 42.
    B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. Part 1: Fundamentals. Proc. IEEE 80, 520–538 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    M. Pierro, A. Sassaroli, P.R. Bergethon, B.L. Ehrenberg, S. Fantini, Phase-amplitude investigation of spontaneous low-frequency oscillations of cerebral hemodynamics with near-infrared spectroscopy: a sleep study in human subjects. NeuroImage 63, 1571–1584 (2012)CrossRefGoogle Scholar
  44. 44.
    B.B. Biswal, F.Z. Yetkin, V.M. Haughton, J.S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995)CrossRefGoogle Scholar
  45. 45.
    M.D. Greicius, B. Krasnow, A.L. Reiss, V. Menon, Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Nat. Acad. Sci. USA 100, 253–258 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    M.D. Fox, M.E. Raichle, Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature 8, 700–711 (2007)Google Scholar
  47. 47.
    B.R. White, A.Z. Snyder, A.L. Cohen, S.E. Petersen, M.E. Raichle, B.L. Schlaggar, J.P. Culver, Resting-state functional connectivity in the human brain revealed with diffuse optical tomography. NeuroImage 47, 148–156 (2009)CrossRefGoogle Scholar
  48. 48.
    C.M. Lu, Y.J. Zhang, B.B. Biswal, Y.F. Zang, D.L. Peng, C.Z. Zhu, Use of fNIRS to assess resting state functional connectivity. J. Neurosci. Methods 186, 242–249 (2010)CrossRefGoogle Scholar
  49. 49.
    S. Sasai, H. Fumitaka, H. Watanabe, G. Taga, Frequency-specific functional connectivity in the brain during resting state revealed by NIRS. NeuroImage 56, 252–257 (2011)CrossRefGoogle Scholar
  50. 50.
    A. Sassaroli, M. Pierro, P.R. Bergethon, S. Fantini, Low-frequency spontaneous oscillations of cerebral hemodynamics investigated with near-infrared spectroscopy: a review. IEEE J. Sel. Top. Quantum Electron. 18, 1478–1492 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    G. Taga, Y. Konishi, A. Maki, T. Tachibana, M. Fujiwara, H. Koizumi, Spontaneous Oscillation of oxy- and deoxy-hemoglobin changes with a phase difference throughout the occipital cortex of newborn infants observed using non-invasive optical topography. Neurosci. Lett. 282, 101–104 (2000)CrossRefGoogle Scholar
  52. 52.
    H. Obrig, M. Neufang, R. Wenzel, M. Kohl, J. Steinbrink, K. Einhäupl, A. Villringer, Spontaneous low frequency oscillations of cerebral hemodynamics and metabolism in human adults. NeuroImage 12, 623–639 (2000)CrossRefGoogle Scholar
  53. 53.
    F. Tian, H. Niu, B. Khan, G. Alexandrakis, K. Behbehani, H. Liu, Enhanced functional brain imaging by using adaptive filtering and a depth compensation algorithm in diffuse optical tomography. IEEE Trans. Med. Imag. 30, 1239–1251 (2011)CrossRefGoogle Scholar
  54. 54.
    O. Pucci, V. Toronov, K. St.Lawrence, Measurement of the optical properties of a two-layer model of the human head using broadband near-infrared spectroscopy. Appl. Opt. 49, 6324–6332 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    T. Funane, H. Atsumori, T. Katura, A.N. Obata, H. Sato, Y. Tanikawa, E. Okada, M. Kiguchi, Quantitative evaluation of deep and shallow tissue layers’ contribution to fNIRS signal using multi-distance optodes and independent component analysis. NeuroImage 85, 150–165 (2014)CrossRefGoogle Scholar
  56. 56.
    L. Zucchelli, D. Contini, R. Re, A. Torricelli, L. Spinelli, Method for the discrimination of superficial and deep absorption variations by time domain fNIRS. Biomed. Opt. Express 4, 2893–2910 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Sergio Fantini
    • 1
  • Kristen T. Tgavalekos
    • 1
  • Xuan Zang
    • 1
  • Angelo Sassaroli
    • 1
  1. 1.Department of Biomedical EngineeringTufts UniversityMedfordUSA

Personalised recommendations