Advertisement

CMOS Silicon Photomultiplier Development

  • N. D’Ascenzo
  • V. Saveliev
  • Q. Xie
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 218)

Abstract

CMOS—complementary metal-oxide-semiconductor technology at present time is the most advanced semiconductor technology for the development and production of microelectronic elements. Many signs have long pointed toward CMOS as the preferable sensor technology of the future. In many ways, the bright future for CMOS sensor technology was made officially by leading electronic companies in early 2015 to claim that up to 2025 all kind of sensors will be produced in CMOS technology. Beyond this, improvements of CMOS technology and the strong price/performance ratio of CMOS sensors make them increasingly attractive for many academic and industrial applications. The development of Silicon Photomultiplier (SiPM)—a new sensor for the low photon flux in standard CMOS technology—is an important new step for the development, optimisation and mass production of SiPM for the wide application areas as nuclear medicine, experimental physics, visualisation systems. It is an important step for the future developments of new SiPM structures, especially advanced digital SiPM structures, digital SiPM imagers, and Avalanche Pixel structures (APix) for the detection of ionisation particles.

References

  1. 1.
    H. Toshikaza, Photomultiplier Tubes, Basics and Applications (Hamamatsu Photonics K. K., Electron Tube Division, Japan, 2006)Google Scholar
  2. 2.
    M. Atac, J. Park, D. Cline, D. Chrisman, M. Petroff, E. Anderson, Nucl. Instrum. Methods Phys. Res. A 314, 56 (1992)ADSCrossRefGoogle Scholar
  3. 3.
    V. Saveliev, V. Golovin, Nucl. Instrum. Methods A 442, 223 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    V. Golovin, V. Saveliev, Nucl. Instrum. Methods A 518, 560 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    A.G. Chynoweth, K.G. McKay, Phys. Rev. 102, 369 (1956)ADSCrossRefGoogle Scholar
  6. 6.
    V. Saveliev, Quantum Detector Arrays (US Patent US 7,825,384, 2010)Google Scholar
  7. 7.
    N. D’Ascenzo, V. Saveliev, Q. Xie, L. Wang, in Optoelectronics—Materials and Devices, ed. by S. Pyshkin, J. Ballato (Intech, 2015)Google Scholar
  8. 8.
    N. D’Ascenzo, P. Marrocchesi, C.S. Moon, F. Morsani, L. Ratti, V. Saveliev, A. Savoy-Navarro, Q. Xie, J. Instrum. 9, C03027Google Scholar
  9. 9.
    N. D’Ascenzo, V. Saveliev, in Photodetectors, ed. by S. Pyshkin, J. Ballato (Intech, 2015)Google Scholar
  10. 10.
    D.J. Herbert, V. Saveliev, N. Belcari, N. D’Ascenzo, A. Del Guerra, A. Golovin, I.E.E.E. Trans, Nucl. Sci. 53, 389 (2006)CrossRefGoogle Scholar
  11. 11.
    V. Saveliev, in Advances Optical and Photonic Devices, ed. by W. Shi (Intech, 2012)Google Scholar
  12. 12.
    N. D’Ascenzo, V. Saveliev, in Photodetectors, ed. by J.-W. Shi (Intech, 2012)Google Scholar
  13. 13.
    N. D’Ascenzo, V. Saveliev, L. Wang, Q. Xie, J. Instrum. 10, C08017 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Lee, H. Rucker, W. Choi, I.E.E.E. Electr, Dev. Lett. 33, 80 (2012)CrossRefGoogle Scholar
  15. 15.
    M. Lee, H. Rucker, W. Choi, I.E.E.E. Electr, Dev. Lett. 37, 60 (2016)CrossRefGoogle Scholar
  16. 16.
    N. Izhaky, M.T. Morse, S. Kohel, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, M.J. Paniccia, I.E.E.E.J. Sel, Top. Quantum Electron. 12, 1688 (2006)CrossRefGoogle Scholar
  17. 17.
    W. Sul, J. Oh, C. Lee, G. Cho, W. Lee, S. Kim, J. Rhee, I.E.E.E. Electr, Dev. Lett. 31, 41 (2010)CrossRefGoogle Scholar
  18. 18.
    K. Katayama, T. Toyabe, IEDM Technical Digest (1989), p. 135Google Scholar
  19. 19.
    W. Shockley, W.T. Read, Phys. Rev. 87, 835 (1952)ADSCrossRefGoogle Scholar
  20. 20.
    J.G. Fossum, R.P. Mertens, D.S. Lee, J.F. Nijs, Solid State Electron. 26, 569 (1983)ADSCrossRefGoogle Scholar
  21. 21.
    D.M. Caughey, R.E. Thomas, Proc. IEEE 55, 2192 (1967)CrossRefGoogle Scholar
  22. 22.
    J.W. Slotboom, H.C. De Graaf, Solid State Electron. 19, 857 (1976)ADSCrossRefGoogle Scholar
  23. 23.
  24. 24.
    N. D’Ascenzo, V. Saveliev, Q. Xie, Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS 2016), p. 215Google Scholar
  25. 25.
    N. D’Ascenzo, V. Saveliev, Nucl. Instrum. Methods A 695, 265 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Huazhong University of Science and TechnologyWuhanChina

Personalised recommendations