Advertisement

Photochromic Materials Towards Energy Harvesting

  • Gonçalo Magalhães-Mota
  • Pedro Farinha
  • Susana Sério
  • Paulo A. Ribeiro
  • Maria Raposo
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 218)

Abstract

Solar to electrical energy conversion is one of the possible approaches regarding energy demand and sustainability. While traditional semiconductor photovoltaic units are seen to be well implemented in the market, with companies offering packs for both domestic and industries, the search for new materials and technologies aiming improvement in efficiency together with low cost issues has been continuously stressed over the past 20 years. This work point out a novel approach for energy conversion and storage devices, based on the so called photochromic electrets or photoelectrets, by using materials containing highly polarisable molecules as multifunctional diarylethenes (DTEs) and azobenzenes. This is supported by experimental results which show that (1) DTE-CN blends after electrical field induced orientation are able to induce external current response when submitted to visible light pulse (2) visible light is able to induce birefringence in layer-by-layer (LbL) films of poly{1-(4-(3-carboxy-4-hydroxy-phenylazo) benzenesulfonamido)-1,2-ethanediyl, sodium salt}(PAZO) and poly (allylamine hydrochloride) (PAH). These preliminary results allow to conclude that solar devices based on photoelectrets are worth to be further investigated towards energy harvesting.

Keywords

Birefringence Solar cell PAZO Layer-by-layer Azobenzene 

Notes

Acknowledgements

The authors acknowledge the financial support from FEDER, through Programa Operacional Factores de Competitividade—COMPETE and Fundação para a Ciência e a Tecnologia—FCT, for the projects UID/FIS/00068/2013, POCTI/FAT/47529/2002 and PTDC/FIS-NAN/0909/2014.

References

  1. 1.
    C.A. Hill, M.C. Such, D. Chen, J. Gonzalez, W.M. Grady, Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans. Smart Grid 3(2), 850–857 (2012)CrossRefGoogle Scholar
  2. 2.
    N.S. Lewis, Towards cost-effective solar energy use. Science 315(5813), 798–801 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    K. Wang, H. Wu, Y. Meng, Z. Wei, Conducting polymer nanowire arrays for high performance supercapacitors. Small 10(1), 14–31 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Hu, L. Song, Z. Zhang, N. Chen, Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy Environ. Sci. 8, 31–54 (2014)CrossRefGoogle Scholar
  5. 5.
    H. Wang, Y. Liang, T. Mirfakhrai, Z. Chen, H.S. Casalongue, H. Dai, Advanced asymmetrical supercapacitors based on graphene hybrid materials. J. Nano Res. 4(8), 729–736 (2011)CrossRefGoogle Scholar
  6. 6.
    G.M. Sessler, (ed.), Electrets-Topics in Applied Physics, vol. 33 (Springer, Berlin Heidelberg, 1980, 1987). ISBN: 978-3-540-17335-9 (Print), 978-3-540-70750-9 (Online)Google Scholar
  7. 7.
    O. Heaviside, Electromagnetic induction and its propagation. Electrization and electrification. Natural electrets. Electrician 230–231 (1885)Google Scholar
  8. 8.
    G.M. Sessler, J.E. West, Self-biased condenser microphone with high capacitance. J. Acoust. Soc. Am. 34, 1787 (1962)ADSCrossRefGoogle Scholar
  9. 9.
    M. Eguchi, On the permanent electret. Philos. Mag. 48, 178–192 (1925)CrossRefGoogle Scholar
  10. 10.
    E. Fukada, Piezoelectricity in polymers and biological materials. Ultrasonics 6, 229 (1968)CrossRefGoogle Scholar
  11. 11.
    M. Raposo, P.A. Ribeiro, J.N. Marat-Mendes, Interaction of corona discharge species with teflon-FEP (Fluoroethylenepropylene) foils. Ferroelectrics 134(1–4), 235–240 (1992)CrossRefGoogle Scholar
  12. 12.
    H. Kawai, The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)ADSCrossRefGoogle Scholar
  13. 13.
    A.J. Lovinger, Ferroelectric polymers. Science 220(4602), 1115–1121 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Trans. 18, 143–211 (1989)CrossRefGoogle Scholar
  15. 15.
    J.A. Giacometti, P.A. Ribeiro, M. Raposo, J.N. Marat-Mendes, J.S.C. Campos, A.S. De Reggi, Study of poling behavior of biaxially stretched poly (vinylidene fluoride) films using the constant-current corona triode. J. Appl. Phys. 78(9), 5597–5603 (1995)ADSCrossRefGoogle Scholar
  16. 16.
    F.I. Mopsik, M.G. Broadhurst, Molecular electrets. J. Appl. Phys. 46(10), 4204–4208 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    X. Zhang, G.M. Sessler, Y. Wang, Fluoroethylenepropylene ferroelectret films with cross-tunnel structure for piezoelectric transducers and micro energy harversters. J. Appl. Phys. 116(074109), 1–8 (2014)Google Scholar
  18. 18.
    X. Zhang, W. Liming, G.M. Sessler, Energy harvesting from vibration with cross-linked polypropylene piezoelectrets. AIP Adv. 5(077185), 1–10 (2015)Google Scholar
  19. 19.
    P. Podrom, S.G.M. Hillenbrand, J. Bos, T. Melz, Vibration-based energy harvesting with stacked piezoelectrets. Appl. Phys. Lett. 104(172901), 1–5 (2014)Google Scholar
  20. 20.
    X. Zhang, P. Podrom, L. Wu, G.M. Sessler, Vibration-based energy harvesting with piezoelectrets having high d31 activity. Appl. Phys. Lett. 108(193903), 1–4 (2016)Google Scholar
  21. 21.
    A. Cuadras, M. Gasulla, V. Ferrari, Thermal energy harvesting through pyroelectricity. Sens. Actuators A 158, 132–139 (2010)CrossRefGoogle Scholar
  22. 22.
    R. Castagna, M. Garbugli, A. Bianco, S. Perissinotto, G. Pariani, C. Bertarelli, G. Lanzani, Photochromic electret: a new tool for light energy harvesting. J. Phys. Chem. Lett. 3, 51–57 (2012)CrossRefGoogle Scholar
  23. 23.
    J.H. Kim, K.M. Hong, H.S. Na, Y.K. Han, Polymer thin films containing azo dye for rewritable media. Japanese J. Appl. Phys. 40, 1585–1587 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    A. Natanshon, P. Rochon, J. Gosselin, S. Xie, Azo polymers for reversible optical storage 1. Poly[4’-[[2-(acryloyloxy)ethy]ethylamino]4-nitroazobenzene]. Macromolecules 25, 2268–2273 (1992)ADSCrossRefGoogle Scholar
  25. 25.
    X. Meng, A. Natansohn, P. Rochon, Azo polymers for reversible optical storage. 11 poly{4,4′-(1-methylethylidene) bisphenylene 3-[4-(4-nitrophenylazo)phenyl]-3-aza-pentanedioate}. J. Polym. Sci. Part B Polym. Phys. 34, 1461–1466 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    Z. Sekkat, J. Wood, W. Knoll, Reorientation mechanism of azobenzenes within the trans-cis photoisomerization. J. Phys. Chem. 99, 17226–17234 (1995)CrossRefGoogle Scholar
  27. 27.
    G.S. Hartley, The cis-form of azobenzene. Nature 140, 281 (1937)ADSCrossRefGoogle Scholar
  28. 28.
    K.G. Yager, C.J Barret, Azobenzene polymers for photonic application. 1–35 (2009). WileyGoogle Scholar
  29. 29.
    A. Monteiro, Estudo da dinâmica da criação e da relaxação de birrefrigência fotoinduzida em filmes automontados de PAH/PAZO, MSc thesis, Universidade Nova de Lisboa, Lisboa, Portugal (2013)Google Scholar
  30. 30.
    C. Cojocariu, P. Rochon, Light-induced motions in azobenzene containing polymers. Pure Appl. Chem. 76, 1479–1497 (2004)CrossRefGoogle Scholar
  31. 31.
    H. Rau, Photoisomerization of sterically hinderes azobenzes. J. Photochem. Photobiol. 42, 321–327 (1988)CrossRefGoogle Scholar
  32. 32.
    P. Farinha, S. Sério, P.A. Ribeiro, M. Raposo, Birefringence creation by solar light—a new approach to the development of solar cells with azobenzene materials, in Proceedings of the 4th International Conference on Photonics, Optics and Laser Technology (PHOTOPTICS 2016), pp. 367–370. ISBN: 978-989-758-174-8Google Scholar
  33. 33.
    O.N. Oliveira Jr., M. Raposo, A. Dhanabalan, Langmuir-Blodgett (LB) and self-assembled (SA) polymeric films, in Handbook of Surfaces and Interfaces of Materials, vol. 4, Chapter 1, ed. by H.S. Nalwa (Academic Press, New York), pp. 1–63Google Scholar
  34. 34.
    Q. Ferreira, P.J. Gomes, M. Raposo, J.A. Giacometti, O.N. Oliveira Jr., P.A. Ribeiro, Influence of ionic interactions on the photoinduced birefringence of poly [1-[4-(3-Carboxy-4 Hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] films. J. Nanosci. Nanotechnol. 7, 2659–2666 (2007)CrossRefGoogle Scholar
  35. 35.
    Q. Ferreira, P.J. Gomes, M.J.P. Maneira, P.A. Ribeiro, M. Raposo, Mechanisms of adsorption of an azo-polyelectrolyte onto layer-by-layer films. Sens. Actuators B 126, 311–317 (2007)CrossRefGoogle Scholar
  36. 36.
    Q. Ferreira, P.A. Ribeiro, O.N. Oliveira Jr., M. Raposo, Long-term stability at high temperatures for birefringence in PAZO/PAH layer-by-layer films. ACS Appl. Mater. Interfaces 4, 1470–1477 (2012)CrossRefGoogle Scholar
  37. 37.
    Q. Ferreira, P.J. Gomes, P.A. Ribeiro, N.C. Jones, S.V. Hoffmann, N.J. Mason, O.N. Oliveira Jr., M. Raposo, Determination of degree of ionization of poly (allylamine hydrochloride) (PAH) and poly[1-[4-(3-carboxy-4 hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) in layer-by-layer films using vacuum photoabsorption spectroscopy. Langmuir 29(1), 448–455 (2013)CrossRefGoogle Scholar
  38. 38.
    A.R. Monteiro-Timóteo, J.H.F. Ribeiro, P.A. Ribeiro, M. Raposo, Dynamics of creation photoinduced birefringence on (PAH/PAZO) n layer-by-layer films: analysis of consecutive cycles. Opt. Mater. 51, 18–23 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    J.A. Giacometti, J.S.C. Campos, Constant current corona triode with grid voltage control—application to polymer charging. Rev. Sci. Instrum. 61(3), 1143–1150 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    B. Gross, R. Hessel, Electron-emission from electron-irradiated dielectrics. IEEE Trans. Electr. Insul. 26(1), 18–25 (1991)CrossRefGoogle Scholar
  41. 41.
    R. Piron, E. Toussaere, D. Josse, S. Brasselet, J. Zyss, Towards non-linear photonics in all-optically poled polymer microcavities. Synth. Met. 115, 109–119 (2000)CrossRefGoogle Scholar
  42. 42.
    C. Madruga, P. Alliprandini, M.M. Andrade, M. Goncalves, M. Raposo, P.A. Ribeiro, Birefringence dynamics of poly{1-[4-(3-carboxy-4 hydroxyphenylazo) benzene-sulfonamido-1,2-ethanediyl, sodium salt} cast films. Thin Solid Films 519(22), 8191–8196 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    J.J. Ramsden, Y. Lvov, G. Decher, Determination of optical constants of molecular films assembled via alternate polyion adsorption. Thin Solid Films 254, 246–251 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Gonçalo Magalhães-Mota
    • 1
  • Pedro Farinha
    • 1
  • Susana Sério
    • 1
  • Paulo A. Ribeiro
    • 1
  • Maria Raposo
    • 1
  1. 1.CEFITEC, Departamento de Física, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations