Astrocytic Tumors

  • César R. Lacruz
  • Javier Saénz de Santamaría
  • Ricardo H. Bardales
Part of the Essentials in Cytopathology book series (EICP, volume 13)


Astrocytic tumors constitute the most numerous and heterogeneous group of gliomas, with an incidence estimated at 60% of all primary intracranial neoplasms. Because of the variety and complexity of astrocytic tumors, for their intraoperative study, it is advisable to divide them into two important groups: (1) diffuse astrocytic tumors, a group of widely infiltrative neoplasms –considered to be surgically incurable – that includes diffuse astrocytomas (grades II to IV), diffuse midline glioma, and gliomatosis cerebri, and (2) localized “nondiffuse” astrocytic tumors, a group of relatively circumscribed neoplasms – in which attempt of gross total resection is the treatment of choice – that includes pilocytic astrocytoma, subependymal giant cell astrocytoma, and pleomorphic xanthoastrocytoma. Therefore, distinguishing diffuse astrocytic tumors (any type) from localized “nondiffuse” astrocytic tumors (any type) during surgery remains the main goal for the improvement of treatment planning. In this chapter, the cytomorphologic features and intraoperative differential diagnosis of all these entities are reviewed.


Intraoperative brain assessment Cytology Squash preparation Smear preparation Astrocytic tumors Astrocytoma Infiltrating astrocytomas Circumscribed astrocytomas Diffuse astrocytoma Anaplastic astrocytoma Glioblastoma Giant cell glioblastoma Gliosarcoma Epithelioid glioblastoma Diffuse midline glioma Gliomatosis Pilocytic astrocytoma Pilomyxoid astrocytoma Subependymal giant cell astrocytoma Pleomorphic xanthoastrocytoma Radiation necrosis 

Suggesting Reading

  1. Ahluwalia CK, Chandrasoma PT. Cytomorphology of subependymal giant cell astrocytoma. A case report. Acta Cytol. 1993;37:197–200.PubMedGoogle Scholar
  2. Altermatt HJ, Scheithauer BW. Cytomorphology of subependymal giant cell astrocytoma. Acta Cytol. 1992;36:171–5.PubMedGoogle Scholar
  3. Bleggi-Torres LF, Gasparetto EL, Faoro LN, Hanel R, et al. Pleomorphic xanthoastrocytoma. Report of a case diagnosed by intraoperative cytophatological examination. Diagn Cytopathol. 2001;24:120–2.CrossRefGoogle Scholar
  4. Collins VP, Jones DT, Giannini C. Pilocytic astrocytoma: pathology, molecular mechanisms and markers. Acta Neuropathol. 2015;129:775–88.CrossRefGoogle Scholar
  5. Chan JA, Zhang H, Roberts PS, Jozwiak S, et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropath Exp Neurol. 2004;63:1236–42.CrossRefGoogle Scholar
  6. Chen YH, Gutmann DH. The molecular and cell biology of pediatric low-grade gliomas. Oncogene. 2014;33:2019–26.CrossRefGoogle Scholar
  7. Chiang JCH, Ellison DW. Molecular pathology of paediatric central nervous system tumours. J Pathol. 2017;241:159–72.CrossRefGoogle Scholar
  8. Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev. Pathol. 2014;9:1–25.CrossRefGoogle Scholar
  9. Eckel-Passow JE, Lachance DH, Molinaro AM, Kyle M, et al. Glioma groups based on 1p/19q, IDH, and TERT promoter mutations in tumors. N Engl J Med. 2015;372:2499–508.CrossRefGoogle Scholar
  10. Finkle HI. Protoplasmic astrocytoma: Cytologic features on tissue imprint preparation. Diagn Cytopathol. 1992;8:430–1.CrossRefGoogle Scholar
  11. Franz DN, Agricola K, Mays M, Tudor C, et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann Neurol. 2015;78:929–38.CrossRefGoogle Scholar
  12. Gandolfi A, Tedeschi F, Brizzi R. Cytology of giant-cell glioblastoma. Acta Cytol. 1983;27:193–6.PubMedGoogle Scholar
  13. Gielen GH, Gessi M, Hammes J, Kramm CM, Waha A, Pietsch T. H3F3A K27 M mutation in pediatric CNS tumors. A marker of diffuse high-grade astrocytoma. Am J Clin Pathol. 2013;139:345–9.CrossRefGoogle Scholar
  14. Hayashi T, Haba R, Kushida Y, Katsuki N, et al. Pilomyxoid astrocytoma of the pineal region: cytopathological features and differential diagnostic considerations by intraoperative smear preparation. Diagn Cytopathol. 2015;43:121–4.CrossRefGoogle Scholar
  15. Hawkins C, Walker E, Mohamed N, Zhang C, et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low-grade astrocytoma. Clin Cancer Res. 2011;17:4790–8.CrossRefGoogle Scholar
  16. Ida CM, Rodriguez FJ, Burger PC, Caron AA, et al. Pleomorphic xanthoastrocytoma: natural history and long-term follow-up. Brain Pathol. 2015;25:575–86.CrossRefGoogle Scholar
  17. Jaiswal S, Vij M, Jaiswal AK, Srivastava AK, Behari S. Squash cytology of subependymal giant cell astrocytoma: report of four cases with brief review of literature. Diagn Cytopathol. 2012;40:333–6.CrossRefGoogle Scholar
  18. Jiménez-Heffernan JA, Freih Fraih A, Álvarez F, Bárcena C, Corbacho C. Cytologic features of pleomorphic xanthoastrocytoma, WHO grade II. A comparative study with glioblastoma. Diagn Cytopathol. 2017;45:339–44.CrossRefGoogle Scholar
  19. Kim SH, Lee KG, Kim TS. Cytologic characteristics of subependymal giant cell astrocytoma in squash smears. Acta Cytol. 2007;51:375–9.CrossRefGoogle Scholar
  20. Kim YH, Nobusawa S, Mittelbronn M, Paulus W, et al. Molecular classification of low-grade diffuse gliomas. Am J Pathol. 2010;177:2708–14.CrossRefGoogle Scholar
  21. Kobayashi S. Meningioma, neurilemmoma and astrocytoma specimens obtained with the squash method for diagnosis. Acta Cytol. 1993;37:913–2.PubMedGoogle Scholar
  22. Kobayashi S, Hirakawa E, Haba R. Squash cytology of pleomorphic xanthoastrocytoma mimicking glioblastoma. Acta Cytol. 1999;43:652–8.CrossRefGoogle Scholar
  23. Korshunov A, Meyer J, Capper D, Christians A, et al. Combined molecular analysis of BRAF and IDH1 distinguishes pilocytic astrocytoma from diffuse astrocytoma. Acta Neuropath. 2009;118:401–5.CrossRefGoogle Scholar
  24. Parwani AV, Berman D, Burger PC, Ali SZ. Gliosarcoma: cytopathologic characteristics on fine-needle aspiration and intraoperative touch imprint. Diagn Cytopathol. 2004;30:77–81.CrossRefGoogle Scholar
  25. Prayson RA, Estes ML. Protoplasmic astrocytoma: A clinicopathologic study of 16 tumors. Am J Clin Pathol. 1995;103:705–9.CrossRefGoogle Scholar
  26. Rodriguez FJ, Scheithauer BW, Burger PC, Giannini C. Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol. 2010;34:147–60.CrossRefGoogle Scholar
  27. Roth J, Roach ES, Bartels U, Józwiak S, et al. Subependymal giant cell astrocytoma: diagnosis, screening, and treatment. Recommendations from the international tuberous sclerosis complex consensus conference 2012. Pediatric Neurol. 2013;49:439–44.CrossRefGoogle Scholar
  28. Schindler G, Capper D, Meyer J, Janzarik W, et al. Analysis of BRAF V600E mutation in 1320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol. 2011;121:397–405.CrossRefGoogle Scholar
  29. Schwartzentruber J, Korshunov A, Liu XY, Jones DT, et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature. 2012;482:226–31.CrossRefGoogle Scholar
  30. Solomon DA, Wood MD, Tihan T, Bollen AW, Gupta W, Phillips JJ, Perry A. Diffuse midline gliomas with histone H3-K27 M mutation: A series of 47 cases assessing the spectrum of morphologic variation and associated genetic alterations. Brain Pathology. 2016;26:569–80.CrossRefGoogle Scholar
  31. Takei H, Florez L, Bhattacharjee MB. Cytologic features of subependymal giant cell astrocytoma. A review of 7 cases. Acta Cytol. 2008;52:445–50.CrossRefGoogle Scholar
  32. Teo JG, Ng HK. Cytodiagnosis of pilocytic astrocytoma in smear preparations. Acta Cytol. 1998;42:673–8.CrossRefGoogle Scholar
  33. Venneti S, Santi M, Felicella MM, Yarilin D, et al. A sensitive and specific histopathologic prognostic marker for H3F3A K27 M mutant pediatric glioblastomas. Acta Neuropathol. 2014;128:743–53.CrossRefGoogle Scholar
  34. Watanabe T, Nobusawa S, Kleihues P, Ohgaki H. IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. Am J Pathol. 2009;174:1149–53.CrossRefGoogle Scholar
  35. Weller M, Stupp R, Reifenberger G, Brandes AA, et al. MGMT promoter methylation in malignant gliomas: ready for personalized medicine? Nat Rev. Neurol. 2010;6:39–51.Google Scholar
  36. Wu G, Diaz AK, Paugh BS, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genet. 2014;46:444–50.CrossRefGoogle Scholar
  37. Yan H, Parsons DW, Jin G, McLendon R, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360:765–73.CrossRefGoogle Scholar
  38. Yue X, Liu X, Lo S. Diagnosis of astrocytomas in crush preparations. Acta Cytol. 1987;31:83–4.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • César R. Lacruz
    • 1
  • Javier Saénz de Santamaría
    • 2
  • Ricardo H. Bardales
    • 3
  1. 1.Professor of PathologyComplutense University School of MedicineMadridSpain
  2. 2.Professor of PathologyUniversity Hospital Extremadura, Medical SchoolBadajozSpain
  3. 3.Pathologist, Director Ultrasound-guided Fine Needle Aspiration ServiceOutpatient Pathology Associates / Precision PathologySacramentoUSA

Personalised recommendations