Cardiovascular Imaging in Global Health Radiology

  • Katherine C. Michelis
  • David L. Narotsky
  • Brian G. ChoiEmail author


Cardiovascular disease (CVD) is the number one cause of death globally, and morbidity and mortality are highest in low- and middle-income countries (LMICs) due to unavailability and unaffordability of medical resources for diagnosis and management of CVD. This has led to disastrous economic consequences on the individual, household, and societal level in these regions. Cardiovascular imaging is essential to the care of patients with CVD; however, access to cardiovascular imaging is very limited in low- and middle-income countries due to expense of equipment and challenges in training healthcare personnel to correctly order, acquire, and interpret studies. The state-of-the-art tools for cardiac imaging include echocardiography, coronary angiography and left ventriculography, nuclear imaging, cardiac computed tomography, and cardiac magnetic resonance imaging. Of the available cardiac imaging modalities, echo is the most widely used in LMICs because it is safe, portable, relatively inexpensive, and able to diagnose a variety of CVDs. Additionally, inexperienced practitioners can be trained to perform a focused cardiovascular exam by echo, for example, in screening for rheumatic heart disease, in a relatively short period. Handheld or pocket-sized echo machines are particularly useful, and the images can be interpreted locally or uploaded for remote interpretation by expert cardiologists. Instituting the infrastructure for cardiovascular imaging alone is not sufficient. Clinicians in LMICs must be trained to properly refer patients and interpret the results. Additionally, patients must have access to and be able to afford necessary medicines and surgeries for treatment of CVDs. In the future, the gap to CVD treatment in LMICs may be closed further by use of telemedicine and mobile cardiovascular imaging tools as well as continued international efforts to lower infrastructure costs and train local providers in its use.


Low- and middle-income countries Cardiovascular imaging Telemedicine Echocardiography Ultrasound 







Acquired immunodeficiency disease syndrome


Coronary artery calcium scores


Coronary artery disease


Cardiac computed tomography angiography


Congenital heart disease


Cardiac magnetic resonance


Computed tomography


Cardiovascular disease


Electron-beam computed tomography


Gross domestic product


Hand-carried cardiac ultrasound


Heart failure


Human immunodeficiency virus


International Atomic and Energy Agency




Low- and middle-income countries


Left ventricle


Multi-detector computed tomography


Myocardial perfusion imaging


Noncommunicable disease


Nongovernmental organization


Pocket-sized ultrasound


Rheumatic heart disease


Radiation protection


Single-photon emission computed tomography


Transesophageal echo


Transthoracic echo


United States


World Health Organization


  1. 1.
    WHO Global status report on noncommunicable diseases, updated 2017. Available from: Accessed 8 Apr 2017.
  2. 2.
    Roth G, Huffman M, Moran A, Feigin V, Mensah G, Naghavi M, Murray C. Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation. 2015;132:1667–78.PubMedCrossRefGoogle Scholar
  3. 3.
    Report on the status of major health risk factors for noncommunicable diseases: WHO African Region, 2015. Available from: Accessed 8 Apr 2017.
  4. 4.
    WHO “Noncommunicable diseases” fact sheet, updated 2017. Available from: Accessed 8 Apr 2017.
  5. 5.
    Khatib R, McKee M, Shannon H, Chow C, Rangarajan S, Teo K, et al. Availability and affordability of cardiovascular disease medicines and their effect on use in high-income, middle-income, and low-income countries: an analysis of the PURE study data. Lancet. 2016;387:61–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Vedanthan R, Seligman B, Fuster V. Global perspective on acute coronary syndrome: a burden on the young and poor. Circ Res. 2014;114:1959–75.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yusuf S, Rangarajan S, Teo K, Islam S, Li W, Liu L, et al. Cardiovascular risk and events in 17 low-, middle-, and high-income countries. N Engl J Med. 2014;371:818–27.PubMedCrossRefGoogle Scholar
  8. 8.
    Benjamin E, Blaha M, Chiuve S, Cushman M, Das S, Deo R, et al. Heart disease and stroke statistics-2017 Update: a report from the American Heart Association. Circulation. 2017;135:e146–603.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Disability-adjusted life year (DALY) rates by WHO region. Available from: Accessed 10 June 2017.
  10. 10.
    Reddy KS. India wakes up to the threat of cardiovascular diseases. J Am Coll Cardiol. 2007;50(14):1370–2.PubMedCrossRefGoogle Scholar
  11. 11.
    Huffman M, Rao K, Pichon-Riviere A, Zhao D, Harikrishnan S, Ramaiya K, et al. A cross-sectional study of the microeconomic impact of cardiovascular disease hospitalization in four low- and middle-income countries. PLoS One. 2011;6:e20821.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nugent RA, Feigl AB. Scarce donor funding for non-communicable diseases: will it contribute to a health crisis? Washington, DC: Center for Global Development; 2010. Available at: Accessed 10 June 2017.Google Scholar
  13. 13.
    Sinha S, Barry M. Health technologies and innovation in the global health arena. N Engl J Med. 2011;365:779–82.PubMedCrossRefGoogle Scholar
  14. 14.
    Vedanthan R, Choi B, Baber U, Narula J, Fuster V. Bioimaging and subclinical cardiovascular disease in low- and middle-income countries. J Cardiovasc Transl Res. 2014;7:701–10.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Global Burden of Disease: GBD compare data visualization. Available from: Accessed 10 June 2017.
  16. 16.
    Carapetis JR, Steer AC, Mulholland EK, Weber M. The global burden of group A streptococcal diseases. Lancet Infect Dis. 2005;5(11):685–94.PubMedCrossRefGoogle Scholar
  17. 17.
    Sims Sanyahumbi A, Colquhoun S, Wyber R, Carapetis JR. Global disease burden of group A streptococcus. In: Ferretti JJ, Stevens DL, Fischetti VA, editors. Streptococcus pyogenes: basic biology to clinical manifestations. Oklahoma City: University of Oklahoma Health Sciences Center; 2016. Available at: Accessed 8 Apr 2017.Google Scholar
  18. 18.
    Zühlke L, Engel M, Karthikeyan G, Rangarajan S, Mackie P, Cupido B, et al. Characteristics, complications, and gaps in evidence-based interventions in rheumatic heart disease: the Global Rheumatic Heart Disease Registry (the REMEDY study). Eur Heart J. 2015;36:1115–22a.PubMedCrossRefGoogle Scholar
  19. 19.
    van der Linde D, Konings E, Slager M, Witsenburg M, Helbing W, Takkenberg J, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Stein J, Hsue P. Inflammation, immune activation, and CVD risk in individuals with HIV infection. JAMA. 2012;308:405–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Jin C, Yu C, Sun J, Fang F, Wen Y, Liu M, et al. The healthcare burden of hypertension in Asia. Heart Asia. 2013;5:238–43.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Akter S, Rahman MM, Abe SK, Sultana P. Prevalence of diabetes and prediabetes and their risk factors among Bangladeshi adults: a nationwide survey. Bull World Health Organ. 2014;92:204–13A. Available at: Accessed: 8 Apr 2017.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    International Diabetes Federation – seventh Edition, Regional Fact Sheet. Available at: Accessed: 8 Apr 2017.
  24. 24.
    Mathers C, Stevens G, Mascarenhas M, for World Health Organization. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva: World Health Organization; 2009. Available from: Accessed 10 June 2017.
  25. 25.
    Cheitlin MD, Alpert JS, Armstrong WF, Aurigemma GP, Beller GA, Bierman FZ, et al. ACC/AHA guidelines for the clinical application of echocardiography: executive summary. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Clinical Application of Echocardiography). Developed in collaboration with the American Society of Echocardiography. J Am Coll Cardiol. 1997;29(4):862–79.PubMedCrossRefGoogle Scholar
  26. 26.
    Lang R, Badano L, Mor-Avi V, Afilalo J, Armstrong A, Ernande L. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39.e14.PubMedCrossRefGoogle Scholar
  27. 27.
    Lang R, Badano L, Tsang W, Adams D, Agricola E, Buck T, et al. EAE/ASE recommendations for image acquisition and display using three-dimensional echocardiography. J Am Soc Echocardiogr. 2012;25:3–46.PubMedCrossRefGoogle Scholar
  28. 28.
    De Maria AN, Blanchard DG. Echocardiography. In: WR FV, Harrington RA, editors. Hurst’s the heart. 13th ed. New York: McGraw Hill; 2011. p. 411–89.Google Scholar
  29. 29.
    Blessberger H, Binder T. Two dimensional speckle tracking echocardiography: clinical applications. Heart. 2010;96(24):2032–40.PubMedCrossRefGoogle Scholar
  30. 30.
    Hahn R, Abraham T, Adams M, Bruce C, Glas K, Lang R, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination: recommendations from the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr. 2013;26:921–64.PubMedCrossRefGoogle Scholar
  31. 31.
    Goldstein S, Evangelista A, Abbara S, Arai A, Asch F, Badano L, et al. Multimodality imaging of diseases of the thoracic aorta in adults: from the American Society of Echocardiography and the European Association of Cardiovascular Imaging: endorsed by the Society of Cardiovascular Computed Tomography and Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr. 2015;28:119–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Bruun N, Habib G, Thuny F, Sogaard P. Cardiac imaging in infectious endocarditis. Eur Heart J. 2014;35:624–32.PubMedCrossRefGoogle Scholar
  33. 33.
    Kern MJ, King SB. Cardiac catheterization, cardiac angiography, and coronary blood flow and pressure measurements. In: Fuster V, Walsh R, Harrington RA, editors. Hurst’s the heart. New York: McGraw Hill; 2011. p. 490–536.Google Scholar
  34. 34.
    Berman DS, Hayes SW, Hachamovitch R, Shaw LJ, Germano G. Nuclear Cardiology. In: WR FV, Harrington RA, editors. Hurst’s the heart. 13th ed. New York: McGraw Hill; 2011. p. 562–98.Google Scholar
  35. 35.
    Alexiou S, Georgoulias P, Angelidis G, Valotassiou V, Tsougos I, Psimadas D, et al. Myocardial perfusion and left ventricular quantitative parameters obtained using gated myocardial SPECT: comparison of three software packages. J Nucl Cardiol. 2016;25:911–24.PubMedCrossRefGoogle Scholar
  36. 36.
    Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, Hecht HS, et al. ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol. 2010;55(23):2663–99.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Taylor AJ, Cerqueira M, Hodgson JM, Mark D, Min J, O’Gara P, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/NASCI/SCAI/SCMR 2010 Appropriate Use Criteria for Cardiac Computed Tomography. A Report of the American College of Cardiology Foundation Appropriate Use Criteria Task Force, the Society of Cardiovascular Computed Tomography, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the American Society of Nuclear Cardiology, the North American Society for Cardiovascular Imaging, the Society for Cardiovascular Angiography and Interventions, and the Society for Cardiovascular Magnetic Resonance. Circulation. 2010;122(21):e525–55.PubMedGoogle Scholar
  38. 38.
    Mao SS, Pal RS, McKay CR, Gao YG, Gopal A, Ahmadi N, et al. Comparison of coronary artery calcium scores between electron beam computed tomography and 64-multidetector computed tomographic scanner. J Comput Assist Tomogr. 2009;33(2):175–8.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Gepner A, Young R, Delaney J, Budoff M, Polak J, Blaha M, et al. Comparison of Carotid Plaque Score and Coronary Artery Calcium Score for Predicting Cardiovascular Disease Events: The Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2017;6:e005179.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG. Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors: mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) project. J Am Coll Cardiol. 2005;46(5):807–14.PubMedCrossRefGoogle Scholar
  41. 41.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.PubMedCrossRefGoogle Scholar
  42. 42.
    Kim HW, Farzaneh-Far A, Klem I, Rehwald W, Kim RJ. Magnetic Resonance of the Heart. In: Fuster V, Walsh R, Harrington RA, editors. Hurst’s the heart. 13th ed. New York: McGraw Hill; 2011. p. 631–66.Google Scholar
  43. 43.
    Captur G, Manisty C, Moon J. Cardiac MRI evaluation of myocardial disease. Heart Asia. 2016;102:1429–35.CrossRefGoogle Scholar
  44. 44.
    Bruder O, Wagner A, Lombardi M, Schwitter J, van Rossum A, Pilz G, et al. European Cardiovascular Magnetic Resonance (EuroCMR) registry – multi national results from 57 centers in 15 countries. J Cardiovasc Magn Reson. 2013;15:9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Schwitter J, Wacker C, van Rossum A, Lombardi M, Al-Saadi N, Ahlstrom H, et al. MR-IMPACT: comparison of perfusion-cardiac magnetic resonance with single-photon emission computed tomography for the detection of coronary artery disease in a multicentre, multivendor, randomized trial. Eur Heart J. 2008;29:480–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Schwitter J, Wacker C, Wilke N, Al-Saadi N, Sauer E, Huettle K, et al. MR-IMPACT II: Magnetic Resonance Imaging for Myocardial Perfusion Assessment in Coronary artery disease Trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J. 2013;34:775–81.PubMedCrossRefGoogle Scholar
  47. 47.
    Vincenti G, Masci P, Monney P, Rutz T, Hugelshofer S, Gaxherri M, et al. Stress perfusion CMR in patients with known and suspected CAD: prognostic value and optimal ischemic threshold for revascularization. JACC Cardiovasc Imaging. 2017;10:526–37.PubMedCrossRefGoogle Scholar
  48. 48.
    Richter J, Dengler A, Mohammed EG, Ali GM, Abdel-Rahim I, Kaiser C, et al. Results of echocardiographic examinations in a regional hospital of central Sudan. Trans R Soc Trop Med Hyg. 1990;84(5):749–52.PubMedCrossRefGoogle Scholar
  49. 49.
    Anabwani GM, Bonhoeffer P. Prevalence of heart disease in school children in rural Kenya using colour-flow echocardiography. East Afr Med J. 1996;73(4):215–7.PubMedGoogle Scholar
  50. 50.
    Marijon E, Ou P, Celermajer DS, Ferreira B, Mocumbi AO, Jani D, et al. Prevalence of rheumatic heart disease detected by echocardiographic screening. N Engl J Med. 2007;357(5):470–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Carapetis JR, Hardy M, Fakakovikaetau T, Taib R, Wilkinson L, Penny DJ, et al. Evaluation of a screening protocol using auscultation and portable echocardiography to detect asymptomatic rheumatic heart disease in Tongan schoolchildren. Nat Clin Pract Cardiovasc Med. 2008;5(7):411–7.PubMedCrossRefGoogle Scholar
  52. 52.
    Saxena A, Ramakrishnan S, Roy A, Seth S, Krishnan A, Misra P, et al. Prevalence and outcome of subclinical rheumatic heart disease in India: the RHEUMATIC (Rheumatic Heart Echo Utilisation and Monitoring Actuarial Trends in Indian Children) study. Heart. 2011;97(24):2018–22.PubMedCrossRefGoogle Scholar
  53. 53.
    Reeves BM, Kado J, Brook M. High prevalence of rheumatic heart disease in Fiji detected by echocardiography screening. J Paediatr Child Health. 2011;47(7):473–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Remenyi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K, et al. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease – an evidence-based guideline. Nat Rev Cardiol. 2012;9:297–309.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lu J, Sable C, Ensing G, Webb C, Scheel J, Aliku T, et al. Simplified rheumatic heart disease screening criteria for handheld echocardiography. Am J Soc Echocardiogr. 2015;28:463–9.CrossRefGoogle Scholar
  56. 56.
    Engelman D, Kado JH, Reményi B, Colquhoun SM, Carapetis JR, Donath S, et al. Focused cardiac ultrasound screening for rheumatic heart disease by briefly trained health workers: a study of diagnostic accuracy. Lancet Glob Health. 2016;4:e386–94.PubMedCrossRefGoogle Scholar
  57. 57.
    Beaton A, Nascimento B, Diamantino A, Pereira G, Lopes E, Miri C, et al. Efficacy of a Standardized Computer-Based Training Curriculum to Teach Echocardiographic Identification of Rheumatic Heart Disease to Nonexpert Users. Am J Cardiol. 2016;117:1783–9.PubMedCrossRefGoogle Scholar
  58. 58.
    Spitzer E, Mercado J, Islas F, Rothenbühler M, Kurmann R, Zürcher F, et al. Screening for Rheumatic Heart Disease among Peruvian Children: A Two-Stage Sampling Observational Study. PLoS One. 2015;10:e0133004.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Yacoub S, Lang HJ, Shebbe M, Timbwa M, Ohuma E, Tulloh R, et al. Cardiac function and hemodynamics in Kenyan children with severe malaria. Crit Care Med. 2010;38(3):940–5.PubMedCrossRefGoogle Scholar
  60. 60.
    Kobal SL, Lee SS, Willner R, Aguilar Vargas FE, Luo H, Watanabe C, et al. Hand-carried cardiac ultrasound enhances healthcare delivery in developing countries. Am J Cardiol. 2004;94(4):539–41.PubMedCrossRefGoogle Scholar
  61. 61.
    Sicari R, Galderisi M, Voigt JU, Habib G, Zamorano JL, Lancellotti P, et al. The use of pocket-size imaging devices: a position statement of the European Association of Echocardiography. Eur J Echocardiogr. 2011;12(2):85–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Liebo MJ, Israel RL, Lillie EO, Smith MR, Rubenson DS, Topol EJ. Is pocket mobile echocardiography the next-generation stethoscope? A cross-sectional comparison of rapidly acquired images with standard transthoracic echocardiography. Ann Int Med. 2011;155(1):33–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Prinz C, Voigt JU. Diagnostic accuracy of a hand-held ultrasound scanner in routine patients referred for echocardiography. J Am Soc Echocardiogr. 2011;24(2):111–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Choi BG, Mukherjee M, Dala P, Young HA, Tracy CM, Katz RJ, et al. Interpretation of remotely downloaded pocket-size cardiac ultrasound images on a web-enabled smartphone: validation against workstation evaluation. J Am Soc Echocardiogr. 2011;24(12):1325–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Singh S, Bansal M, Maheshwari P, Adams D, Sengupta S, Price R, et al. American Society of Echocardiography: Remote Echocardiography with Web-Based Assessments for Referrals at a Distance (ASE-REWARD) study. J Am Soc Echocardiogr. 2013;26:221–33.PubMedCrossRefGoogle Scholar
  66. 66.
    Babalola RO, Ajayi AA. A cross-sectional study of echocardiographic indices, treadmill exercise capacity and microvascular complications in Nigerian patients with hypertension associated with diabetes mellitus. Diabetic Med. 1992;9(10):899–903.PubMedCrossRefGoogle Scholar
  67. 67.
    Ajayi AA, Balogun MO, Ajayi AT. Correlation among radiologic, echocardiographic indices and self paced-exercise capacity in heart failure. Int J Cardiol. 1990;27(1):135–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Oyati IA, Danbauchi SS, Alhassan MA, Isa MS. Diastolic dysfunction in persons with hypertensive heart failure. J Nat Med Assoc. 2004;96(7):968–73.Google Scholar
  69. 69.
    Jaiyesimi F, Antia AU. Childhood rheumatic heart disease in Nigeria. Trop Geograph Med. 1981;33(1):8–13.Google Scholar
  70. 70.
    Adesanya CO. M-mode echocardiography in the diagnosis of mitral stenosis. Niger Med J. 1979;9(5–6):533–7.PubMedGoogle Scholar
  71. 71.
    Muddu M, Mutebi E, Mondo C. Prevalence, types and factors associated with echocardiographic abnormalities among newly diagnosed diabetic patients at Mulago Hospital. Afr Health Sci. 2016;16:183–93.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Chelo D, Nguefack F, Menanga A, Ngo Um S, Gody J, Tatah S, et al. Spectrum of heart diseases in children: an echocardiographic study of 1666 subjects in a pediatric hospital, Yaounde, Cameroon. Cardiovasc Diagn Ther. 2016;6:10–9.PubMedPubMedCentralGoogle Scholar
  73. 73.
    Ogah OS, Adebanjo AT, Otukoya AS, Jagusa TJ. Echocardiography in Nigeria: use, problems, reproducibility and potentials. Cardiovasc Ultrasound. 2006;4:13.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Zaidi H. Medical physics in developing countries: looking for a better world. Biomed Imaging Intervent J. 2008;4(1):e29.Google Scholar
  75. 75.
    Lele VR, Soman P. Nuclear cardiology in India and the developing world: opportunities...and challenges! J Nucl Cardiol. 2009;16(3):348–50.PubMedCrossRefGoogle Scholar
  76. 76.
    Vitola JV, Shaw LJ, Allam AH, Orellana P, Peix A, Ellmann A, et al. Assessing the need for nuclear cardiology and other advanced cardiac imaging modalities in the developing world. J Nucl Cardiol. 2009;16(6):956–61.PubMedCrossRefGoogle Scholar
  77. 77.
    Cerci J, Trinidade E, Preto D, Cerci R, Lemos P, Cesar L, et al. Investigation route of the coronary patient in the public health system in Curitiba, São Paulo and in InCor – IMPACT study. Arq Bras Cardiol. 2014;103:192–200.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Rehani M. The IAEA’s activities on radiation protection in interventional cardiology. Biomed Imaging Interv J. 2007;3(2):e31.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Vitola J, Mut F, Alexánderson E, Pascual T, Mercuri M, Karthikeyan G, et al. INCAPS Investigators Group. Opportunities for improvement on current nuclear cardiology practices and radiation exposure in Latin America: Findings from the 65-country IAEA Nuclear Cardiology Protocols cross-sectional Study (INCAPS). J Nucl Cardiol. 2017;24(3):851–9.PubMedCrossRefGoogle Scholar
  80. 80.
    SonoWorld Website. Available at: Accessed 10 June 2017.
  81. 81.
    Vitola J. Nuclear cardiology and CVD in the developing world: Are we applying our scarce resources appropriately? Why is our mortality rate so high? J Nucl Cardiol. 2016;23:1166–70.PubMedCrossRefGoogle Scholar
  82. 82.
    Dos Santos M, Santos M, Tura B, Félix R, Brito A, De Lorenzo A. Budget impact of applying appropriateness criteria for myocardial perfusion scintigraphy: The perspective of a developing country. J Nucl Cardiol. 2016;23:1160–5.PubMedCrossRefGoogle Scholar
  83. 83.
    Ladapo J, Blecker S, O’Donnell M, Jumkhawala S, Douglas P. Appropriate use of cardiac stress testing with imaging: a systematic review and meta-analysis. PLoS One. 2016;11:e0161153.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Rashid U, Qureshi A, Hyder S, Sadiq M. Pattern of congenital heart disease in a developing country tertiary care center: factors associated with delayed diagnosis. Ann Pediatr Cardiol. 2016;9:210–5.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mocumbi AO, Lameira E, Yaksh A, Paul L, Ferreira MB, Sidi D. Challenges on the management of congenital heart disease in developing countries. Int J Cardiol. 2011;148(3):285–8.PubMedCrossRefGoogle Scholar
  86. 86.
    Sliwa K, Wilkinson D, Hansen C, Ntyintyane L, Tibazarwa K, Becker A, et al. Spectrum of heart disease and risk factors in a black urban population in South Africa (the Heart of Soweto Study): a cohort study. Lancet. 2008;371(9616):915–22.PubMedCrossRefGoogle Scholar
  87. 87.
    Kwan G, Bukhman A, Miller A, Ngoga G, Mucumbitsi J, Bavuma C, et al. A simplified echocardiographic strategy for heart failure diagnosis and management within an integrated noncommunicable disease clinic at district hospital level for sub-Saharan Africa. JACC Heart Fail. 2013;1:230–6.PubMedCrossRefGoogle Scholar
  88. 88.
    Yankah C, Fynn-Thompson F, Antunes M, Edwin F, Yuko-Jowi C, Mendis S, et al. Cardiac surgery capacity in sub-Saharan Africa: quo vadis? Thorac Cardiovasc Surg. 2014;62:393–401.PubMedCrossRefGoogle Scholar
  89. 89.
    Tantchou Tchoumi JC, Ambassa JC, Chelo D, Djimegne FK, Giamberti A, Cirri S, et al. Pattern and clinical aspects of congenital heart diseases and their management in Cameroon. Bull Soc Pathol Exot. 2011;104(1):25–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Haddad N, Bittar OJ, Pereira AA, da Silva MB, Amato VL, Farsky PS, et al. Consequences of the prolonged waiting time for patient candidates for heart surgery. Arq Bras Cardiol. 2002;78(5):452–65.PubMedCrossRefGoogle Scholar
  91. 91.
    Edwin F, Sereboe LA, Tettey MM, Aniteye EA, Kotei DA, Tamatey MM, et al. Experience from a single centre concerning the surgical spectrum and outcome of adolescents and adults with congenitally malformed hearts in West Africa. Cardiol Young. 2010;20(2):159–64.PubMedCrossRefGoogle Scholar
  92. 92.
    Mirabel M, Lachaud M, Offredo L, Lachaud C, Zuschmidt B, Ferreira B, et al. Cardiac surgery in low-income settings: 10 years of experience from two countries. Arch Cardiovasc Dis. 2017;110:82–90.PubMedCrossRefGoogle Scholar
  93. 93.
    Cameron A, Ewen M, Ross-Degnan D, Ball D, Laing R. Medicine prices, availability, and affordability in 36 developing and middle-income countries: a secondary analysis. Lancet. 2009;373(9659):240–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Mendis S, Fukino K, Cameron A, Laing R, Filipe A Jr, Khatib O, et al. The availability and affordability of selected essential medicines for chronic diseases in six low- and middle-income countries. Bull World Health Organization. 2007;85(4):279–88.CrossRefGoogle Scholar
  95. 95.
    Kishore SP, Vedanthan R, Fuster V. Promoting global cardiovascular health ensuring access to essential cardiovascular medicines in low- and middle-income countries. J Am Coll Cardiol. 2011;57(20):1980–7.PubMedCrossRefGoogle Scholar
  96. 96.
    Mollura D, Shah N, Mazal J. White paper report of the 2013 RAD-AID conference: improving radiology in resource-limited regions and developing countries. J Am Coll Radiol. 2014;11:913–9.CrossRefGoogle Scholar
  97. 97.
    LaBounty TM, Kim RJ, Lin FY, Budoff MJ, Weinsaft JW, Min JK. Diagnostic accuracy of coronary computed tomography angiography as interpreted on a mobile handheld phone device. JACC Cardiovasc Imaging. 2010;3(5):482–90.PubMedCrossRefGoogle Scholar
  98. 98.
    Finn JP, Saleh R, Thesen S, Ruehm SG, Lee MH, Grinstead J, et al. MR imaging with remote control: feasibility study in cardiovascular disease. Radiology. 2006;241(2):528–37.PubMedCrossRefGoogle Scholar
  99. 99.
    Sturke R, Vorkoper S, Duncan K, Levintova M, Parascondola M. Addressing NCDs through research and capacity building in LMICs: lessons learned from tobacco control. Glob Health Action. 2016;9:32407.PubMedCrossRefGoogle Scholar
  100. 100.
    Fuster V, Kelly BB, Vedanthan R. Global cardiovascular health: urgent need for an intersectoral approach. J Am Coll Cardiol. 2011;58(12):1208–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katherine C. Michelis
    • 1
  • David L. Narotsky
    • 1
  • Brian G. Choi
    • 2
    Email author
  1. 1.Icahn School of Medicine at Mount Sinai, The Zena and Michael A. Wiener Cardiovascular InstituteNew YorkUSA
  2. 2.Department of MedicineGeorge Washington UniversityWashington, DCUSA

Personalised recommendations