Tsunami Precursors: Mathematical Model and Applications

  • Oleg Novik
  • Feodor Smirnov
  • Maxim Volgin


A mathematical model of seismo-hydro-electromagnetic (EM)-temperature geophysical field interaction has been formulated, according to the principles of the magneto-thermo-elasticity and magneto-hydrodynamic theories. Signals of different physical natures, arising in a lithosphere–ocean–atmosphere domain as a result of submarine seismic excitation, were computed. On the basis of satisfactory results of comparisons with measurements, a multidisciplinary vertically distributed (from the seafloor up to the ionosphere) tsunami precursors detection system is described.


Tsunami Precursors Detection Mathematical model 


  1. Artru, J., Ducic, V., Kanamory, H., et al. (2005). Ionosphere detection of gravity waves induced by tsunamis. Geophysical Journal International, 160, 840–848.CrossRefGoogle Scholar
  2. Basseville, M., & Benveniste, A. (Eds.). (1986). Detection of abrupt changes in signals and dynamical systems, Lecture notes in control and information sciences (Vol. 77). Berlin: Springer.Google Scholar
  3. Belov, S. B., Migunov, N. I., & Sobolev, G. A. (1974). Magnetic effect of the strong earthquakes at Kamchatka. Magnetism and Aeronomy, 14, 380–382 (in Russian).Google Scholar
  4. Beransoli, L., Favali, P., & Smriglio, G. (Eds.). (2002). Science–technology synergy for research in the marine environment, challenges for the XXI century, Developments in marine technology (Vol. 12). Amsterdam: Elsevier.Google Scholar
  5. Blaunstein, N., & Hayakawa, M. (2009). Short-term ionospheric precursors of earthquakes using vertical and oblique ionosondes. Physics and Chemistry of the Earth, Parts A/B/C, 34(6–7), 496–507. Special issue, Electromagnetic phenomena associated with earthquakes and volcanoes, Edited by M. Hayakawa, J. Y. Liu, K. Hattori, and L. Telesca.CrossRefGoogle Scholar
  6. Calais, E., & Minster, J. B. (1998). GPS, earthquakes, the ionosphere, and the space shuttle. Physics of the Earth and Planetary Interiors, 105, 167–181.CrossRefGoogle Scholar
  7. Casey, K., Lim, A., & Dozier, G. (2008). A sensor network architecture for tsunami detection and response. International Journal of Distributed Sensor Networks, 4(1), 28–43.CrossRefGoogle Scholar
  8. Constable, S. C., Orangez, A. S., Hoversten, G. M., & Morrison, H. F. (1998). Marine magnetotellurics for petroleum exploration. Part I: A sea-floor equipment system. Geophysics, 63, 816–825.CrossRefGoogle Scholar
  9. Davies, K., & Hartmann, G. K. (1997). Studying the ionosphere with the global positioning system. Radio Science, 32, 1695–1698.CrossRefGoogle Scholar
  10. Ershov, S., & Novik, O. (2009). Elements of the tsunami precursors’ physics: Seismo-hydro-electromagnetics. In Proceedings (CD) of the 6th international marine electromagnetics conference (MARELEC 2009) (pp. 122–131), Stockholm.Google Scholar
  11. Ershov, S., Mikhaylovskaya, I., & Novik, O. (2001). Electromagnetic signals of seismic excitation of geological structures beneath a sea bottom. Physics and Chemistry of the Earth, 26, 761–768.Google Scholar
  12. Ershov, S., Mikhaylovskaya, I., & Novik, O. (2006). Theory of EM monitoring of sea bottom geothermal areas. Journal of Applied Geophysics, 58, 330–350.CrossRefGoogle Scholar
  13. Everett, M. E., Constable, S., & Constable, C. G. (2003). Effects of near-surface conduction on global satellite induction responses. Geophysical Journal International, 153, 277–285.CrossRefGoogle Scholar
  14. Gohberg, M. B., Krylov, S. M., & Levshenko, V. T. (1991). Electromagnetic field of the earthquake focus. Transactions (Doklady) of the Russian Academy of Sciences, 308, 1–3. (Translated from Russian, Doklady Acad. Nauk USSR, 308, 62–65, 1989).Google Scholar
  15. González, F. I., Bernard, E. N., Meinig, C., Eble, M., Mofjeld, H. O., & Stalin, S. (2005). The NTHMP tsunameter network. Natural Hazards, 35, 25–39.CrossRefGoogle Scholar
  16. Gower, J. (2005). Jason 1 detects the 26 December 2004 tsunami. EOS, Transactions, American Geophysical Union, 86(4), 37–38.CrossRefGoogle Scholar
  17. Hayakawa, M. (Ed.). (2003). Atmospheric and ionospheric electromagnetic phenomena associated with earthquakes. Tokyo: Terrapub.Google Scholar
  18. Hayakawa, M. (2015). Earthquake prediction with radio techniques. Hoboken: Wiley.CrossRefGoogle Scholar
  19. Hayakawa, M., Hobara, Y., Yasuda, Y., Yamaguchi, H., Ohta, K., Izutsu, J., et al. (2012). Possible precursor to the March 11, 2011, Japan earthquake: Lonospheric perturbations as seen by subionospheric very low frequency/low frequency propagation. Annals of Geophysics, 55(1), 95–99. (Special issue on earthquake precursors).CrossRefGoogle Scholar
  20. Hayman, N. W., Bach, W., Blackman, D., Christeson, G. L., Edwards, K., Haymon, R., et al. (2010). Future scientific drilling of oceanic crust. EOS, Transactions, American Geophysical Union, 91(15), 133–134.CrossRefGoogle Scholar
  21. Iyemori, T., Kamei, T., Tanaka, Y., Takeda, M., Hashimoto, T., Araki, T., et al. (1996). Co-seismic geomagnetic variations observed at the 1995 Hyogoken–Nanbu earthquake. Journal of Geomagnetism and Geoelectricity, 48, 1059–1070.CrossRefGoogle Scholar
  22. Jeremy, N., Thomas, J. N., Love, J. J., Johnston, M., & Yumoto, K. (2009). On the reported magnetic precursor of the 1993 Guam earthquake. Geophysical Research, 36, L16301. Scholar
  23. Ladyzhenskaya, O. A., Solonnikov, V. A., & Uraltseva, N. N. (1967). Linear and quasilinear equations of parabolic type. Moscow: Izdat. (“Nauka”. (1968). Translations of Mathematical Monographs (English trans; Vol. 23). Providence: American Mathematical Society, 1967).Google Scholar
  24. Landau, L. D., & Lifshits, E. M. (1986). Course of theoretical physics. In Fluid mechanics (Vol. VI). Cambridge: Academic Press (Translated from Russian).Google Scholar
  25. Lin, F. C., Nakornphanom, K., Sookhanaphibarn, K., & Lursinsap, C. (2010). A new paradigm for detecting tsunamis by remote sensing. International Journal of Geoinformatics, 6(1), 19–30.Google Scholar
  26. Lin, J. C., Brunner, D., & Gerbig, C. (2011). Studying atmospheric transport trough Lagrangian models. EOS, Transactions, American Geophysical Union, 92(21), 177–178.CrossRefGoogle Scholar
  27. Maugin, G. A. (1988). Continuum mechanics of electromagnetic solids. Amsterdam: North-Holland.Google Scholar
  28. Novik, O. B. (1995). The Galerkin method for a three-dimensional nonlinear system of magnetothermo-elasticity equations. Transactions (Doklady) of the Russian Academy of Science, 335A(3), 15–21. (Translated from Russian, Doklady Rossiyskoy Akademii Nauk, 1994, 334, 100–102).Google Scholar
  29. Novik, O. B., & Ershov, S. V. (2001). Electromagnetic and temperature signals from the earth’s depth. Scientific monographs of federal program of integration of high education and fundamental science, Moscow (in Russian).Google Scholar
  30. Novik, O. B., Ershov, S. V., & Mikhaylovskaya, I. B. (2001). Electromagnetic signals in atmosphere caused by dynamic processes in ocean lithosphere. In Proceedings of the 15th European space agency symposium on rocket and balloon programs and related research (pp. 369–373), Biarritz, 28–31 May 2001.Google Scholar
  31. Ocal, E., Piatanesi, A., & Heinrich, P. P. (1999). Tsunami detection by satellite altimetry. Journal of Geophysical Research, 104, 599–615.CrossRefGoogle Scholar
  32. Olsen, N. (1999). Induction studies with satellite data. Surveys in Geophysics, 20, 309–340.CrossRefGoogle Scholar
  33. Oraevsky, V. N., Ruzhin, Yu. Ya., & Shagemuratov, I. I. (2000). Anomalies of the ionosphere TEC above Turkey. In International Wraclaw symposium on electromagnetic compatibility (EMC 2000), proceedings (pp. 509–511).Google Scholar
  34. Ruzhin, Y., & Nomicos, C. (2007). Radio VHF precursors of earthquakes. Natural Hazards, 40, 573–583.CrossRefGoogle Scholar
  35. Sherwood, C. (2011, November/December). Mechanical arm + internet = realtime profilers of particles near the seafloor. Sound Waves Monthly Newsletter, USGS. Accessed 08 January 2019.
  36. Siripunvaraporna, W., Egbert, G., Lenburyc, Y., & Uyeshimad, M. (2005). Three-dimensional magnetotelluric inversion, data-space method. Physics of the Earth and Planetary Interiors, 150, 3–14.CrossRefGoogle Scholar
  37. Tahery, A. (2015). Function spaces and partial differential equations. Oxford: Oxford University Press.CrossRefGoogle Scholar
  38. Thomas, J. N., Love, J. J., Komjathy, A., Verkhoglyadova, O. A., Butala, M., & Rivera, N. (2012). On the reported ionospheric precursor of the 1999 Hector Mine, California earthquake. Geophysical Research Letters, 39, L06302.Google Scholar
  39. Toh, H., Goto, T., & Hamano, Y. (1998). A new seafloor electromagnetic station with an Overhauser magnetometer, a magnetotelluric variograph and an acoustic telemetry modem. Earth, Planets and Space, 50, 895–903.CrossRefGoogle Scholar
  40. Usui, H., & Omura, Y. (Eds.). (2007). Advanced methods for space simulations. Tokyo: Terrapub.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Oleg Novik
    • 1
  • Feodor Smirnov
    • 1
  • Maxim Volgin
    • 1
  1. 1.IZMIRAN of the Russian Academy of SciencesMoscowRussia

Personalised recommendations