Advertisement

Imaging of Oculomotor (Third) Cranial Nerve Palsy

  • Michael S. VaphiadesEmail author
  • Martin W. ten Hove
  • Tim Matthews
  • Glenn H. Roberson
  • Alexandra Sinclair
Chapter

Abstract

The evaluation of an isolated third cranial nerve palsy can be difficult and dangerous. The choices for initial imaging of a third nerve palsy is challenging in part because of the number of potential neuroimaging choices (e.g., magnetic resonance angiography (MRA), computed tomography angiography (CTA), intra-arterial digital subtraction angiography (DSA), or routine MRI or CT scan). This chapter describes the clinical guidelines in the evaluation of third nerve palsy, reviews the neuroimaging techniques, and outlines potential the advantages and disadvantages of each type of imaging.

Keywords

Magnetic resonance angiography (MRA) Computed tomography angiography (CTA) Intra-arterial digital subtraction angiography (DSA) 

Notes

Acknowledgment

This work was supported in part by an unrestricted grant from the Research to Prevent Blindness, Inc., New York, NY.

A.J.S. is funded by an NIHR Clinician Scientist Fellowship (NIHR-CS-011-028).

There are no commercial or financial conflicts of interest and any funding sources by either author.

References

  1. 1.
    Vaphiades MS, Horton JA. MRA or CTA, that’s the question. Surv Ophthalmol. 2005;50:406–10.CrossRefGoogle Scholar
  2. 2.
    Kissel JT, Burde RM, Klingele TG, Zeiger HE. Pupil-sparing oculomotor palsies with internal carotid-posterior communicating artery aneurysms. Ann Neurol. 1983;13:149–54.CrossRefGoogle Scholar
  3. 3.
    Trobe JD. Third nerve palsy and the pupil. Footnotes to the rule. Arch Ophthalmol. 1988;106:601–2.CrossRefGoogle Scholar
  4. 4.
    Trobe JD. Managing oculomotor nerve palsy. Arch Ophthalmol. 1998;116:798.CrossRefGoogle Scholar
  5. 5.
    Jacobson DM. Pupil involvement in patients with diabetes-associated oculomotor nerve palsy. Arch Ophthalmol. 1998;116:723–7.CrossRefGoogle Scholar
  6. 6.
    Jacobson DM. Relative pupil-sparing third nerve palsy: etiology and clinical variables predictive of a mass. Neurology. 2001;56:797–8.CrossRefGoogle Scholar
  7. 7.
    Yousem DM, Grossman RI. Neuroradiology: the requisites, vol. 13. 3rd ed. Philadelphia: Mosby, Inc; 2010. p. 160–3.Google Scholar
  8. 8.
    Mayberg MR, Batjer HH, Dacey R, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage. A statement for healthcare professionals from a special writing group of the stroke council, American heart association. Circulation. 1994;90:2592–605.CrossRefGoogle Scholar
  9. 9.
    Orz Y, AlYamany M. The impact of size and location on rupture of intracranial aneurysms. Asian J Neurosurg. 2015;10:26–31.CrossRefGoogle Scholar
  10. 10.
    The International Study of Unruptured Intracranial Aneurysms Investigators. Unruptured intracranial aneurysms—risk of rupture and risks of surgical intervention. N Engl J Med. 1998;339:1725–33.CrossRefGoogle Scholar
  11. 11.
    Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362:103–10.CrossRefGoogle Scholar
  12. 12.
    Elmalem VI, Hudgins PA, Bruce BB, Newman NJ, Biousse V. Underdiagnosis of posterior communicating artery aneurysm in noninvasive brain vascular studies. J Neuroophthalmol. 2011;31:103–9.CrossRefGoogle Scholar
  13. 13.
    Ross JS, Masaryk TJ, Modic MT, Ruggieri PM, Haacke EM, Selman WR. Intracranial aneurysms: evaluation by MR Angiography. AJNR Am J Neuroradiol. 1990;11:449–56.PubMedGoogle Scholar
  14. 14.
    White PM, Wardlaw JM. Unruptured intracranial aneurysms. J Neuroradiol. 2003;30:336–50.PubMedGoogle Scholar
  15. 15.
    Jacobson DM, Trobe JD. The emerging role of magnetic resonance angiography in the management of patients with third cranial nerve palsy. Am J Ophthalmol. 1999;28:94–6.CrossRefGoogle Scholar
  16. 16.
    Lee AG, Hayman LA, Brazis PW. The evaluation of isolated third nerve palsy revisited: an update on the evolving role of magnetic resonance, computed tomography, and catheter angiography. Surv Ophthalmol. 2002;47:137–57.CrossRefGoogle Scholar
  17. 17.
    Anderson GB, Ashforth R, Steinke DE, et al. CT angiography for the detection and characterization of carotid artery bifurcation disease. Stroke. 2000;31:2168–74.CrossRefGoogle Scholar
  18. 18.
    Thiex R, Norbash AM, Frerichs KU. The safety of dedicated-team catheter-based diagnostic cerebral angiography in the era of advanced noninvasive imaging. AJNR Am J Neuroradiol. 2010;31:230–4.CrossRefGoogle Scholar
  19. 19.
    Villablanca JP, Jahan R, Hooshi P, Lim S, Duckwiler G, Patel A, Sayre J, Martin N, Frazee J, Bentson J, Viñuela F. Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. AJNR Am J Neuroradiol. 2002;23:1187–98.PubMedGoogle Scholar
  20. 20.
    Chaudhary N, Davagnanam I, Ansari SA, Pandey A, Thompson BG, Gemmete JJ. Imaging of intracranial aneurysms causing isolated third cranial nerve palsy. J Neuroophthalmol. 2009;29:238–44.CrossRefGoogle Scholar
  21. 21.
    El Khaldi M, Pernter P, Ferro F, et al. Detection of cerebral aneurysms in nontraumatic subarachnoid haemorrhage: role of multislice CT angiography in 130 consecutive patients. Radiol Med. 2007;112:123–37.CrossRefGoogle Scholar
  22. 22.
    Menke J, Larsen J, Kallenberg K. Diagnosing cerebral aneurysms by computed tomographic angiography: meta-analysis. Ann Neurol. 2011;69:646–54.CrossRefGoogle Scholar
  23. 23.
    Tang K, Li R, Lin J, Zheng X, Wang L, Yin W. The value of cerebral CT angiography with low tube voltage in detection of intracranial aneurysms. Biomed Res Int. 2015;2015:876796.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Ringelstein A, Lechel U, Fahrendorf DM, Altenbernd JV, Forsting M, Schlamann M. Radiation exposure in perfusion CT of the brain. J Comput Assist Tomogr. 2014;38:25–8.CrossRefGoogle Scholar
  25. 25.
    Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176:289–96.CrossRefGoogle Scholar
  26. 26.
    Prokop M, Debatin JF. MRI contrast media: new developments and trends. CTA vs. MRA. Eur Radiol. 1997;7(Suppl 5):299–306.CrossRefGoogle Scholar
  27. 27.
    Kaufman DI. Magnetic resonance angiography, computed tomographic angiography, conventional angiography: when to use and why. Recent advances in brain angiography and the impact on neuro-ophthalmology. AAO Neuro-Ophthalmology Subspecialty Day Course Syllabus; 2001. pp 47–52.Google Scholar
  28. 28.
    Jäger HR, Grieve JP. Advances in non-invasive imaging of intracranial vascular disease. Ann R Coll Surg Engl. 2000;82:1–5.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Balcer LJ, Galetta SL, Yousem DM, et al. Pupil-involving third nerve palsy and carotid stenosis: rapid recovery following endarterectomy. Ann Neurol. 1997;41:273–6.CrossRefGoogle Scholar
  30. 30.
    Kupersmith MJ, Heller G, Cox TA. Magnetic resonance angiography and clinical evaluation of third nerve palsies and posterior communicating artery aneurysms. J Neurosurg. 2006;105:228–34.CrossRefGoogle Scholar
  31. 31.
    Sailer AM, Wagemans BA, Nelemans PJ, de Graaf R, van Zwam WH. Diagnosing intracranial aneurysms with MR angiography: systematic review and meta-analysis. Stroke. 2014;45:119–26.CrossRefGoogle Scholar
  32. 32.
    Canadian Neuroophthalmology Group. IV. Neuropathies and Nuclear Palsies; (n.d.). http://www.neuroophthalmology.ca/textbook/disorders-of-eye-movements/iv-neuropathies-and-nuclear-palsies/i-iii-nerve-palsy.
  33. 33.
    Fang C, Leavitt JA, Hodge DO, Holmes JM, Mohney BG, Chen JJ. Incidence and etiologies of acquired third nerve palsy using a population-based method. JAMA Ophthalmol. 2017;135(1):23.  https://doi.org/10.1001/jamaophthalmol.2016.4456.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
  35. 35.
    The Canadian Medical Imaging Inventory, 2015; (n.d.). https://www.cadth.ca/canadian-medical-imaging-inventory-2015.
  36. 36.
    Barua B, Rovere MC, Skinner BJ. Waiting your turn: wait times for health care in Canada 2010 report. SSRN Electr J. 2011.  https://doi.org/10.2139/ssrn.1783079.
  37. 37.
    Byrne SC, Barrett B, Bhatia R. The impact of diagnostic imaging wait times on the prognosis of lung cancer. Can Assoc Radiol J. 2015;66(1):53–7.  https://doi.org/10.1016/j.carj.2014.01.003.CrossRefPubMedGoogle Scholar
  38. 38.
    Emery DJ, Forster AJ, Shojania KG, Magnan S, Tubman M, Feasby TE. Management of MRI Wait Lists in Canada; 2009. https://www.longwoods.com/content/20537.CrossRefGoogle Scholar
  39. 39.
    Diagnostic Imaging Dataset Annual Statistical Release 2015/16; 2016. https://www.england.nhs.uk/statistics/
  40. 40.
    Yang ZL, Ni QQ, Schoepf UJ, Cecco CN, Lin H, Duguay TM, et al. Small intracranial aneurysms: diagnostic accuracy of CT angiography. Radiology. 2017;285(3):941–52.  https://doi.org/10.1148/radiol.2017162290.CrossRefPubMedGoogle Scholar
  41. 41.
    Romijn M, Andel HG, Walderveen MV, Sprengers M, Rijn JV, Rooij WV, Majoie C. Diagnostic accuracy of CT angiography with matched mask bone elimination for detection of intracranial aneurysms: comparison with digital subtraction angiography and 3D rotational angiography. Am J Neuroradiol. 2007;29(1):134–9.  https://doi.org/10.3174/ajnr.a0741.CrossRefPubMedGoogle Scholar
  42. 42.
    Mericle R, Bansal N, Goddard T, Tomycz L, Hawley C, Ayad M. “Real-world” comparison of non-invasive imaging to conventional catheter angiography in the diagnosis of cerebral aneurysms. Surg Neurol Int. 2011;2(1):134.  https://doi.org/10.4103/2152-7806.85607.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Taha MM, Nakahara I, Higashi T, Iwamuro Y, Iwaasa M, Watanabe Y, Munemitsu T. Endovascular embolization vs surgical clipping in treatment of cerebral aneurysms: morbidity and mortality with short-term outcome. Surg Neurol. 2006;66(3):277–84.  https://doi.org/10.1016/j.surneu.2005.12.031.CrossRefPubMedGoogle Scholar
  44. 44.
    Gupta V, Gupta A, Kaur G, Jha A, Chinchure S, Goel G. A decade after International Subarachnoid Aneurysm Trial: coiling as a first choice treatment in the management of intracranial aneurysms—technical feasibility and early management outcomes. Asian J Neurosurg. 2014;9(3):137.  https://doi.org/10.4103/1793-5482.142733.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Davies JM, Lawton MT. Advances in open microsurgery for cerebral aneurysms. Neurosurgery. 2014:74, S7–16.  https://doi.org/10.1227/neu.0000000000000193.CrossRefGoogle Scholar
  46. 46.
    Frontera JA, Moatti J, Reyes KM, McCullough S, Moyle H, Bederson JB, Patel A. Safety and cost of stent-assisted coiling of unruptured intracranial aneurysms compared with coiling or clipping. J Neurointerv Surg. 2012;6(1):65–71.  https://doi.org/10.1136/neurintsurg-2012-010544.CrossRefPubMedGoogle Scholar
  47. 47.
    John S, Bain MD, Hui FK, Hussain MS, Masaryk TJ, Rasmussen PA, Toth G. Long-term follow-up of in-stent stenosis after pipeline flow diversion treatment of intracranial aneurysms. Neurosurgery. 2016;78(6):862–7.  https://doi.org/10.1227/neu.0000000000001146.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Michael S. Vaphiades
    • 1
    Email author
  • Martin W. ten Hove
    • 2
  • Tim Matthews
    • 3
  • Glenn H. Roberson
    • 4
  • Alexandra Sinclair
    • 5
    • 6
  1. 1.Departments of Ophthalmology, Neurology and NeurosurgeryUniversity of Alabama at BirminghamBirminghamUSA
  2. 2.Department of OphthalmologyQueen’s UniversityKingstonCanada
  3. 3.Department of OphthalmologyUniversity Hospital BirminghamBirminghamUK
  4. 4.Department of RadiologyUniversity of Alabama at BirminghamBirminghamUSA
  5. 5.Metabolic NeurologyInstitute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of BirminghamBirminghamUK
  6. 6.Department of NeurologyUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth HospitalBirminghamUK

Personalised recommendations