An Antarctic Mammalian Community

  • Thomas Defler
Part of the Topics in Geobiology book series (TGBI, volume 42)


This is a description of an Eocene Antarctic mammalian assemblage and illustrates the faunal connection that existed between Antarctic and South America, since all of these ancient Eocene Antarctic mammals had living relatives in South America. The community existed during the Early-Middle to Late Eocene when the earth was very warm, the warmest of the entire Cenozoic. Since marsupials dispersed from South America to Australia in the Early Paleocene, it is obvious that Antarctica was covered by forest until the arrival of plunging global temperatures at the end of the Eocene and Early Oligocene. Many plants that have been identified from the Antarctic Peninsula are commonly seen on the southern tip of South America even today.


  1. Barrett P (1999) Antarctic climate history over the last 100 million years. Terra Ant Rep 3:53–72Google Scholar
  2. Bond M, Pascual R, Reguero MA, Santillana SN, Marenssi SA (1990) Los primeros “ungulados” extinguidos sudamericanos de la Antártida. Ameghiniana 26:240Google Scholar
  3. Bond M, Reguero MA, Vizcaino SF, Marenssi SA (2006) A new “South American ungulate” (Mammalia: Litopterna) from the Eocene of the Antarctic Peninsula. In: Francis JE, Pirrie D, Crame JA (eds) Cretaceous-Tertiary high-latitude palaeoenvironments: James Ross basin, Antarctica. Geol Soc SP, London 258: 177–186CrossRefGoogle Scholar
  4. Bond M, Kramarz A, MacPhee RDE, Reguero M (2011) A new astrapothere (Mammalia, Meridiungulata) from La Meseta Formation, Seymour (Marambio) Island, and a reassessment of previous records of Antarctic astrapotheres. Am Mus Novit 3718:1–16CrossRefGoogle Scholar
  5. Bond M, Reguero MA, Vizcaíno SF, Marenssi SA (2014) A new “South American ungulate” (Mammalia: Litopterna) from the Eocene of the Antarctic Peninsula. In: Francis JE, Pirrie D, Crame JA (eds) Cretaceous-Tertiary high-latitude palaeoenvironments, James Ross basin, Antarctica. Geol Soc SP, London 258:163–176CrossRefGoogle Scholar
  6. Cantrill DJ (2012) The vegetation of Antarctica through geological time. Cambridge University Press, New YorkCrossRefGoogle Scholar
  7. Carlini, AA, Pascual R, Reguero MA, Scillato Yané GJ, Tonni EP, Vizcaíno SF (1990) The first paleogene land placental mammal from Antarctica: its paleoclimatic and paleobiogeographic bearings. In: IV international congress of systematic and evolutionary biology, Maryland, Abstracts, p 325Google Scholar
  8. Case JA (1988) Paleogene floras from Seymour island, Antarctica Peninsula. In: Feldmann RM, Woodburne MO (eds) Geology and palaeontology of Seymour island, Antarctic peninusula. Geol Soc Am Mem 198:523–530Google Scholar
  9. Case JA (2006) The late middle Eocene terrestrial vertebrate fauna from Seymour Island: the tails of the Eocene Patagonian size distribution. In: Francis JE, Pirrie D, Crame JA (eds) Cretaceous-Tertiary high-latitude palaeoenvironments: James Ross basin, Antarctica. Geol Soc SP, London 258: 177–186CrossRefGoogle Scholar
  10. Chornogubsky L, Goin FJ, Reguero M (2009) A reassessment of Antarctic polydolopid marsupials (Middle Eocene, La Meseta formation). Antarct Sci 21(3):285–297CrossRefGoogle Scholar
  11. Dingle R, Lavelle M (1998a) Antarctic Peninsula cryosphere: early Oligocene (c. 30 Ma) initiation and a revised glacial chronology. J Geol Soc Lond 155:433–437CrossRefGoogle Scholar
  12. Dingle R, Lavelle M (1998b) Late Cretaceous-Cenozoic climatic variations of the northern Antarctic Peninsula: new geochemical evidence and review. Palaeogeogr Palaeoclimatol Palaeoecol 107:79–101Google Scholar
  13. Dingle RV, Lavelle M (2000) Antarctic peninsula Late Cretaceous-Early Cenozoic palaeoenvironments and Gondwana palaeogeographies. J Afr Earth Sci 31(1):91–105CrossRefGoogle Scholar
  14. Dingle R, Marenssi S, Lavelle M (1998) High latitude Eocene climate deterioration: evidence from the northern Antarctic Peninsula. J S Am Earth Sci 11:571–579CrossRefGoogle Scholar
  15. Gandolfo MA, Marenssi SA, Santillana SN (1998) Flora y paleoclima de la Formación La Meseta (Eocene medio), isla Marambio (Seymour), Antártida. In: Casado S (ed) Paleógeno de América del sur y de la península Antártica. Asoc Pal Argent Publ 5:155–162Google Scholar
  16. Gelfo JN (2014) Implicatieons of the evolutionary statis of Notiolofos arquinotiensis (Mammalia) Eocene of Seymour Island, Antarctica. Symposium: cretaceous-tertiary palaeobiogeographic connections with Antarctica. 4th international palaeontological congress, MendozaGoogle Scholar
  17. Gelfo JN (2016) Considerations about the evolutionary stasis of Notiolofos arquinotiensis (Mammalia: Sparnotheriodontidae), Eocene of Seymour Island, Antarctica. Ameghiniana 53(3):316–332CrossRefGoogle Scholar
  18. Gelfo JN, Mörs T, Lorente M, López GM, Reguero M (2015) The oldest mammals from the Antarctic, early Eocene of the La Meseta Formation, Seymour Island. Palaeontology 58(1):101–110CrossRefGoogle Scholar
  19. Gelfo JN, López GM, Santillana SN (2017) Eocene ungulate mammals from West Antarctica: implications from their fossil record and a new species. Antarct Sci 29(5):445–455CrossRefGoogle Scholar
  20. Goin FJ, Case JA, Woodburne MO, Vizcaino SF, Reguero MA (1999) New discoveries of “opossum-like” marsupials from Antarctica (Seymour Island, Middle Eocene). J Mamm Evol 6(4):335–365CrossRefGoogle Scholar
  21. Goin FJ, Reguero MA, Pascual R, Von Koenigswald W, Woodburne MO, Case JA, Marenssi SA, Vieytes C, Vizcainso SF (2006) First gondwanatherian mammal from Antarctica. In: Francis JE, Pirrie D, Crame JA (eds) Cretaceous-Tertiary high-latitude palaeoenvironments: James Ross basin, Antarctica. J Geol Soc Lond 258:135–162CrossRefGoogle Scholar
  22. Goin FJ, Zimicz N, Reguero MA, Santillana SN, Marenssi SA, Moly JJ (2007) New marsupial (Mammalia) from the Eocene of Antarctica, and the origins and affinities of the Microbiotheria. Rev Asoc Geológ Argent 62(4):597–603Google Scholar
  23. Hooker JJ (1992) An additional record of a placental mammal (Order Astrapotheria) from the Eocene of West Antarctica. Antarct Sci 4(1):107–108CrossRefGoogle Scholar
  24. Jamieson SSR, Sugden DE (2008) Landscape evolution of Antarctica. In: Cooper AK, Barrett PJ, Stagg H, Storey B, Stump E, Wise W (eds) Antarctica: a keystone in a changing world. Proceedings of the 10th International Symposium on Antarctic Earth Sciences. The National Academies Press, Washington, DC, pp 39–54Google Scholar
  25. Krause JM, Clyde WC, Ibañez-Mejía M, Schmitz MD, Barnum T, Bellosi ES, Wilf P (2017) New age constraints for early Paleogene strata of Central Patagonia, Argentina: implications for the timing of South American Land Mammal Age. Geol Soc Am Bull 129(7/8):886–903CrossRefGoogle Scholar
  26. Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records (PDF). Paleoceanography 20; 1003.Ä001071
  27. MacPhee RDE, Reguero MA (2010) Reinterpretation of a middle Eocene record of Tardigrada (Pilosa, Xenarthra, Mammalia) from La Meseta formation, Seymour Island, West Antarctica. Am Mus Novit 3698:1–21CrossRefGoogle Scholar
  28. Marenssi SA, Reguero MA, Santillana SN, Vizcaino SF (1994) Eocene land mammals from Seymour Island, Antarctica: palaeobiogeographical implications. Antarct Sci 6(1):3–15CrossRefGoogle Scholar
  29. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis J, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov V, Lorium C, Pépin L, Ritz C, Saltzman E, Stieveard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok Ice Core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  30. Poole I, Cantrill DJ (2006) Cretaceous and Cenozoic vegetation of Antarctica integrating the fossil wood record. In: Francis JE, Pirrie D, Crame JA (eds) Cretaceous-Tertiary high-latitude palaeoenvironments; James Ross basin, Antarctica. J Geol Soc Lond 258:63–81CrossRefGoogle Scholar
  31. Reguero MA (2016) Evolution of the Cenozoic mammals from Antarctica. In: Agnolin FL, Lio GL, Brissón Egli F, Chimento NR, Novas FE (eds) Historia evolutiva y paleobiogeográfica de los vertebrados de América del Sur. MACN-Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” e Instituto Nacional de Investigación de las Ciencias Naturales, Buenos Aires, pp 403–412Google Scholar
  32. Reguero MA, Vizcaíno SF, Goin FJ, Marenssi SA, Santillana SN (1998) Eocene high-latitude terrestrial vertebrates from Antarctica as biogeographic evidence In: Casadio S (ed) Paleógeno de América del Sur y de la península Antártica. Asoc Pal Argent Publ, 5:185–198 (cited in Chornobubsky et al. 2009)Google Scholar
  33. Reguero MA, Marenssi A, Santillana SN (2002) Antarctic Peninsula and South America (Patagonia) Paleogene terrestrial faunas and environments: biogeographic relationships. Palaeogeogr Palaeoclimatol Palaeoecol 179:189–210CrossRefGoogle Scholar
  34. Reguero MA, Goin F, Acosta Hopitaleche C, Dutra T, Marenessi S (2013) Late Cretaceous/Paleogene West Antarctica terrestrial biota and its intercontinental affinities. Springer, New YorkCrossRefGoogle Scholar
  35. Reguero MA, Gelfo JN, López GM, Bond M et al (2014) Final Gondwana breakup: The Paleogene South American native ungulates and the demise of the South America-Antarctica land connection. Glob Planet Chang 123:400–413CrossRefGoogle Scholar
  36. Reguero MA, Goin FJ, Abello MA, Chornogubsky L, Gelfo JN (2016) New metatherian mammal from early Eocene levels of the la Meseta Formation, Antarctic Peninsula. Open Science Conference SCAR 2016, Kuala Lumpur, Malaysia. AbstractsGoogle Scholar
  37. Romero EJ (1986) Paleogene phytogeography and climatology of South America. Ann Mo Bot Gard 73:449–461CrossRefGoogle Scholar
  38. Shen Y (1995) A paleoisthmus between southern South America with the Antarctic Peninsula during Late Cretaceous and Early Tertiary. VII International Symposium on Antarctic Earth Sciences, Abstracts. SienaGoogle Scholar
  39. Shen Y (1998) A paleoisthmus linking southern South America with the Antarctic Peninsula during Late Cretaceous and Early Tertiary. Sci China Ser D Earth Sci 41(3):225–229Google Scholar
  40. Shellito CJ, Sloan LC, Huber M (2003) Climate model sensitivity to atmospheric CO2 levels in the Early-Middle Paleogene. Palaeogeogr Palaeoclimatol Palaeoecol 193:113–123CrossRefGoogle Scholar
  41. Vizcaíno SF, Carlini AA, Reguero MA (1988) Primer registro de un marsupial Didelphimorphia en Antártida. Su implicancia biogeográfica. In: Quiroga JC, Cione AL (eds) 5th Jornadas Argentinas de Paleontología Vertebrados, Abstracts. Universidad de La Plata, La Plata, pp 30–31Google Scholar
  42. Vizcaíno SF, Scintilato-Yané GJ (1995) An Eocene tardigrade (Mammalia, Xenarthra) from Seymour Island, West Antarctica. Antarct Sci 7:407–408Google Scholar
  43. Vizcaíno SF, Bond M, Reguero MA, Pascual R (1997) The youngest record of fossil land mammals from Antarctica; its significance on the evolution of the terrestrial environment of the Antarctic Peninsula during the late Eocene. J Paleontol 71(2):348–350CrossRefGoogle Scholar
  44. Vizcaíno SF, Reguero MA, Goin FJ, Tambussi CP, Noriega JI (1998) Community structure of Eocene terrestrial vertebrates from Antarctic Peninsula. In: Casadio S (ed) Paleóg Amér Sur Peníns Antártida, Asociación Paleontológica Argentina. Publicación Especial, vol 5, pp 177–183Google Scholar
  45. Weijers JWH, Schouten S, Sluijs A, Brinkhuis H, Damste JSS (2007) Warm arctic continents during the Paleocene-Eocene thermal maximum. Earth Planet Sci Lett 261:230–238CrossRefGoogle Scholar
  46. Wilf P, Cuneo NR, Johnson KR, Hicks JF, Wing SL, Obradovich JD (2003) High plant diversity in Eocene South America: evidence from Patagonia. Science 300:122–125CrossRefGoogle Scholar
  47. Woodburne MO, Zinsmeister WJ (1982) Fossil land mammal from Antarctica. Science 218:284–286CrossRefGoogle Scholar
  48. Woodburne MO, Case JA (1996) Dispersal, vicariance, and the Late Cretaceous to Early Tertiary land mammal biogeography from South America to Australia. J Mamm Evol 3(2):121–161CrossRefGoogle Scholar
  49. Zachos J, Pagani M, Sloan L, Thomas E et al (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292(5517):686–693. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Defler
    • 1
  1. 1.Department of BiologyNational University of Colombia, BogotaBogotaColombia

Personalised recommendations