Advertisement

The Caviomorphs: First South American Rodents

  • Thomas Defler
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 42)

Abstract

The first rodents did not arrive in South America until the mid-Eocene, at about 41 million years ago. This recent discovery makes the history of the caviomorphs extremely interesting, since the earliest known rodents are now known to be from tropical forest and not from dry, savanna-like habitats as previously believed. The group is ancient and is clearly related to the African phiomorph rodents. In this chapter and in Chap.  8, I enjoy describing the probable mode of dispersion of caviomorphs and primates from Africa to South America, since so many have difficulties accepting rafting over the Atlantic Ocean. The history of caviomorphs in South America also includes giant species that appeared during the latter part of the Neogene, culminating in the 1000 kg Josephoartigasia of the Río Plata (Plate River). This chapter also has some original illustrations by Roman Uchytel and by others.

References

  1. Ameghino F (1889) Contribución al conocimiento de los mamíferos fósiles de la República Argentina. Actas de la Academia Nacional de Ciencias (Córdoba) 6:1–1027Google Scholar
  2. Bandoni de Oliveira F, Cassola Molina E, Marroig G (2009) Paleogeography of the South Atlantic: a route for primates and rodents into the New World. In: Garber PA, Estrada A, Bicca-Marques JC, Heymann EW, Strier KB (eds) South American primates: comparative perspectives in the study of behavior, ecology, and conservation. Springer, New York, pp 55–68CrossRefGoogle Scholar
  3. Biknevicius AR, McFarlane DA, MacPhee RDE (1993) Body size in Amblyrhiza inundata (Rodentia, Caviomorpha), an extinct megafaunal rodent from the Anguilla Bank, West Indies: estimates and implications. Am Mus Novit 3079:1–25Google Scholar
  4. Blanco RE (2008) The uncertainties of the largest fossil rodent. Proc R Soc B Biol Sci 275:1957–1958CrossRefGoogle Scholar
  5. Blanco RE, Rinderknecht A, Lecuona G (2012) The bite force of the largest fossil rodent (Hystricognathi, Caviomorpha, Dinomyidae). Lethaia 45:157–163CrossRefGoogle Scholar
  6. Bond M, Tejedor MF, Campbell KE Jr, Chornogubsky L, Novo N, Goin F (2015) Eocene primates of South America and the African origins of New World monkeys. Nature 520:538–541CrossRefGoogle Scholar
  7. Bondesio P, Pascual R, Vucetich MG (1975) Los Neoepiblemidae (Rodentia, Caviomorpha): su caracterización y sus relaciones filogenéticas con los Chinchillidae. Actas Primer Cong Argent Paleontol Bioestratig 2:431–447Google Scholar
  8. Campbell KE Jr (2004) The Paleogene mammalian fauna of Santa Rosa, amazonian Peru, Science series, vol 40. Natural History Museum of Los Angeles County, Los Angeles, p 163Google Scholar
  9. Candela AM, Rasia LL, Pérez ME (2012) Paleobiology of Santacrucian caviomorph rodents: a morphofunctional approach. In: Vizcaíno SF, Kay RF, Susana M, Bargo S (eds) Early Miocene paleobiology in Patagonia: high—latitude paleocommunities of the Santa Cruz formation. Cambridge University Press, CambridgeGoogle Scholar
  10. Cox PG, Rinderknecht A, Blanco RE (2015) Predicting bite force and cranial biomechanics in the largest fossil rodent using finite element analysis. J Anat 226(3):215–223. https://doi.org/10.1111/joa.12282CrossRefGoogle Scholar
  11. Croft DA, Flynn JJ, Wyss AR (2008) The Tinguiririca fauna of Chile and the early stages of “modernization” of South American mammal faunas. Arq Mus Nacion, Rio de Janeiro 66(1):191–211Google Scholar
  12. Deschamps CM, Vieytes EC, Olivares AI, Vucetich MG (2009) Primer registro de Cardiatherium chasicoense (Rodentia, Hydrochoeridae) fuera del área pampeana (Argentina) y su valor bioestratigráfico. Ameghiniana 46(2):295–305Google Scholar
  13. Eisenberg JF (1981) The mammalian radiations: an analysis of trends in evolution, adaptation, and behavior. The University of Chicago Press, ChicagoGoogle Scholar
  14. Emmons LH, Leite YLR, Patton JL (2015) Subfamily Echimyinae Gray, 1825. In: Patton JL, Pardiñas UFJ, D'Elía G (eds) Mammals of South America volume 2: rodents. University of Chicago Press, Chicago/LondonGoogle Scholar
  15. Fabre P-H, Galewski T, Tilak M-K, Douzery EJP (2013) Diversification of South American spiny rats (Echimyidae): a multigene phylogenetic approach. Zool Scr 42:117–134CrossRefGoogle Scholar
  16. Flynn JJ, Wyss AR, Croft DA, Charrier R (2003) The Tinguiririca fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American land mammal age. Palaeogeogr Palaeoclimatol Palaeoecol 195:229–259CrossRefGoogle Scholar
  17. Frailey CD, Campbell KE Jr (2004) Paleogene rodents from amazonian Peru: the Santa Rosa local fauna. In: Campbell KE (ed) The Paleogene mammalian fauna of Santa Rosa, amazonian Peru, Science series, vol 40. Natural History Museum of Los Angeles County, Los Angeles, pp 71–130Google Scholar
  18. Galewski T, Mauffrey J-F, Leite YLR, Patton JL, Douzery EJP (2005) Ecomorphological diversification among South American spiny rats (Rodentia: Echimyidae): a phylogenetic and chronological approach. Mol Phylogenet Evol 34:601–615CrossRefGoogle Scholar
  19. Ghizzoni M (2014) Estimación de la masa corporal de un ejemplar cuaternario del carpincho extinto Neochoerus a través de medidas cráneo-dentales. Rev Bras Paleontolog 17(1):83–90CrossRefGoogle Scholar
  20. Honeycutt RL, Rowe DL, Gallardo MH (2003) Molecular systematics of the South American caviomorph rodents: relationships among species and genera in the family Octodontidae. Mol Phylogenet Evol 26:476–489CrossRefGoogle Scholar
  21. Horovitz I, Sánchez-Villagra MR, Aguilera TM, Aguileara OA (2006) The fossil record of Phoberomys pattersoni Mones 1980 (Mammalia, Rodentia) from Urumaco (Late Miocene, Venezuela), with an analysis of its phylogenetic relationships. J Syst Palaeontol 4(3):293–306CrossRefGoogle Scholar
  22. Horovitz I, Sánchez-Villagra MR, Vucetich MG, Aguilera OA (2010) Fossil rodents from the late Miocene Urumaco and middle Miocene Cumaca formations, Venezuela. In: Sánchez-Villagra MR, Aguilera OA, Carlini AA (eds) Urumaco and Venezuelan paleontology. Indiana University Press, BloomingtonGoogle Scholar
  23. Horovitz I, Sánchez-Villagra MR, Aguilara-S OA (2011) Phoberomys, un gigante entre roedores. Invest y Cienc (febrero), pp 58–63Google Scholar
  24. Huchon D, Douzery JP (2001) From the old world to the new world: a molecular chronicle of the phylogeny and biography of Hystricognath rodents. Mol Phylogenet Evol 20(2):238–251CrossRefGoogle Scholar
  25. Huchon D, Chevret P, Jordan U, et al (May 1, 2007) Multiple molecular evidences for a living mammalian fossil. Proc Natl Acad Sci 104 (18) 7495-7499 https://doi.org/10.1073/pnas.0701289104CrossRefGoogle Scholar
  26. Kramarz AG (2006) Eocardiids (Rodentia, Hystricognathi) from the Pinturas formation, late early Miocene of Patagonia, Argentina. J Vertebr Paleontol 26(3):770–778CrossRefGoogle Scholar
  27. Kretzoi M, Voros I (1989) On a new caviomorph rodent from Peru. Fragm Minerol Palaeont 14:111–116Google Scholar
  28. Lara MC, Patton JL, Da Silva MNF (1996) The simultaneous diversification of South American echimyid rodents (Hystricognathi) base con complete cytochrome b sequences. Mol Phylogenet Evol 5:403–413CrossRefGoogle Scholar
  29. Lavocat R (1980) The implications of rodent paleontology and biogeography to the geographical sources and origin of platyrrhine primates. In: Ciochon RL, Chiarelli BA (eds) Evolutionary biology of new world monkeys and continental drift. Plenum Press, New York, pp 93–103CrossRefGoogle Scholar
  30. Leite YLR, Patton JL (2002) Evolution of South American spiny rats (Rodentia, Echimyidae): the star-phylogeny hypothesis revisited. Mol Phylogenet Evol 25(3):455–464CrossRefGoogle Scholar
  31. Loss-Oliveira L, Aguiar BO, Schrago CG (2012) Testing synchrony in historical biogeography: the case of new world primates and Hystricognathi rodents. Evol Bioinforma 2012(8):127–137. https://doi.org/10.4137/EBO.S9008CrossRefGoogle Scholar
  32. MacPhee RDE, Singer R, Diamond M (2000) Late Cenozoic land mammals from Grenada, Lesser Antilles island-arc. Am Mus Novit 3302:1–20CrossRefGoogle Scholar
  33. McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New YorkGoogle Scholar
  34. Martin T (2004) Incisor enamel microstructure of South America’s earliest rodents: implications for caviomorph origin and diversification. In: Campbell KE (ed) The Paleogene mammalian fauna of Santa Rosa, amazonian Peru, Science series, vol 40. Natural History Museum of Los Angeles County, Los Angeles, pp 131–140Google Scholar
  35. Martin T (2005) Incisor Schmelzmuster diversity in South America’s oldest rodent fauna and early caviomorph history. J Mamm Evol 12(3/4):405–119CrossRefGoogle Scholar
  36. Millien V (2008) The largest among the smallest: the body mass of the giant rodent Josephoartigasia monesi. Proc Biol Sci 275(1646):1953–1955CrossRefGoogle Scholar
  37. Millien V, Bovy H (2010) When teeth and bones disagree: body mass estimation of a giant extinct rodent. J Mammal 91(1):11–18CrossRefGoogle Scholar
  38. Mones A (1988) Notas paleontológicas uruguayas. IV. Nuevos registros de mamíferos fósiles de la Formacióm San José (Plioceno-Pleistoceno inferior?) (Mammalia: Xenarthra; Artiodactyla; Rodentia). Comun Paleontol Mus Hist Nat Montevideo 20:255–277Google Scholar
  39. Morton MC (2013) Setting sail on unknown seas: the past, present and future of species rafting. http://www.earthmagazine.org/article/setting-sail-unknown-seas-past-present-and-future-species-rafting
  40. Nedbal MA, Allard MW, Honeycutt RL (1994) Molecular systematics of hystricognath rodents: evidence from the mitochondrial 12S rRNA gene. Mol Phylogenet Evol 3(3):206–220CrossRefGoogle Scholar
  41. Nowak RM (1999) Walker’s mammals of the world, vol II, 6th edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  42. Opazo JC (2005) A molecular timescale for caviomorph rodents (Mammalia, Hystricognathi). Mol Phylogenet Evol 37:932–937CrossRefGoogle Scholar
  43. Patterson BD, Wood AL (1982) Rodents from the Oligocene of Bolivia and the relationships of the caviomorph. Bull Mus Comp Zool 149(7):371–543Google Scholar
  44. Patterson BD, Solari S, Velazco PM (2012) The role of the Andes in the diversification and biogeography of Neotropical mammals. In: Patterrson BD, Costa LP (eds) Bones, clones, and biomes: the history and geography of recent neotropical mammals. Chicago University Press, ChicagoCrossRefGoogle Scholar
  45. Pérez ME, Vucetich MG (2011) A new extinct genus of Cavioidea (Rodentia, Hystricognathi) from the Miocene of Patagonia (Argentina) and the evolution of cavioid mandibular morphology. J Mamm Evol 18:163–183CrossRefGoogle Scholar
  46. Perelman P, Johnson WE, Roos C, Seuánez HN et al (2011) A molecular phylogeny of living primates. PLoS Genet 7(3):e1001342. https://doi.org/10.1371/journal.pgen.1001342CrossRefGoogle Scholar
  47. Pierre-Olivier A, Marivaux L, Croft DA, Billet G et al (2011) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc R Soc B Biol Sci 279:1319–1326. https://doi.org/10.1098/rspb.2011.1732 First published online 12 October 2011CrossRefGoogle Scholar
  48. Pierre-Olivier A, Abello MA, Adnet S, Altamirano Sierra AJ, Baby P, Billet G, Boivin M, Calderón Y, Candela A, Chabain J, Corfu F, Croft DA, Ganerød JC, Klaus S, Marivaux L, Navarrete RE, Orliac M, Parra F, Pérez ME, Pujos F, Rage J-C, Ravel A, Robinet C, Roddaz M, Tejada-Lara JV, Vélez-Juarbe J, Wesselingh FP, Salas-Gismondi R (2016) A 60-million-year Cenozoic history of western Amazonian ecosystems in Contamana, eastern Peru. Gondwana Res 31:30–59CrossRefGoogle Scholar
  49. Poux P, Chevret P, Huchon D, De Jong WW, Douzery EJP (2006) Arrival and diversification of platyrrhine primates in South America. Syst Biol 55(2):228–244CrossRefGoogle Scholar
  50. Prado JL, Cerdeño E, Roig-Juñent S (1998) The giant rodent Chapalmatherium from the Pliocene of Argentina: new remains and taxonomic remarks on the family Hydrochoeridae. J Vertebr Paleontol 18(4):788–798CrossRefGoogle Scholar
  51. Ribeiro AM, López GM, Bond M (2010) The Leontiniidae (Mammalia, Notoungulata) from the Sarmiento Formation at Gran Barranca, Chubut Province, Argentina. In: Madden RH, Carlini AA, Vucetich MG, Kay RF (eds) The paleontology of Gran Barranca. Cambridge University Press, Cambridge, pp 170–181Google Scholar
  52. Rinderknecht A, Blanco RE (2008) The largest fossil rodent. Proc R Soc B Biol Sci 275:923–928CrossRefGoogle Scholar
  53. Rinderknecht A, Blanco RE (2015) History, taxonomy and paleobiology of giant fossil rodents (Hystricognathi, Dinomyidae). In: Cox PG, Hautier L (eds) Evolution of the rodents: advances in phylogeny, functional morphology and development. Cambridge University Press, Cambridge, p 164CrossRefGoogle Scholar
  54. Rinderknecht A, Bostelmann-T E, Ubilla M (2011) New genus of giant Dinomyidae (Rodentia: Hystricognathi: Caviomarpha) from the late Miocene of Uruguay. J Mammal 92(1):169–178CrossRefGoogle Scholar
  55. Rose K (2006) The beginning of the age of mammals. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  56. Rowe DL, Honeycutt RL (2002) Phylogenetic relationships, ecological correlates, and molecular evolution within the cavioides (Mammalia, Rodentia). Mol Biol Evol 19:263–277CrossRefGoogle Scholar
  57. Rowe DL, Dunn KA, Adkins RM, Honeycutt RL (2010) Molecular clocks keep dispersal hypotheses afloat: evidence for trans-Atlantic rafting by rodents. J Biogeogr 37(2):305CrossRefGoogle Scholar
  58. Sallam HM, Seiffert ER, Steiper ME, Simons EL (2009) Fossil and molecular evidence constrain scenarios for the early evolutionary and biogeographic history of hystricognathous rodents. Proc Natl Acad Sci U S A 106(39):16722–16727CrossRefGoogle Scholar
  59. Sánchez-Villagra MR, Aguilera O, Horovitz I (2003) The anatomy of the world’s largest extinct rodent. Science 301:1708–1710CrossRefGoogle Scholar
  60. Savage RJG, Long MR (1986) Mammal evolution: an illustrated guide. British Museum (Natural History), LondonGoogle Scholar
  61. Simpson GG (1980) Splendid isolation: the curious history of South American mammals. Yale University Press, New Haven/LondonGoogle Scholar
  62. Spotorno AE, Valladares JP, Marin JC, Palma RE, Zulueta C (2004) Molecular divergence and phylogenetic relationships of chinchillids (Rodentia: Chinchillidae). J Mammal 85:384–388CrossRefGoogle Scholar
  63. Upham NS, Patterson BD (2012) Diversification and biogeography of the neotropical caviomorh lineage Octodontoidea (Rodentia: Hystricognathi). Mol Phylogenet Evol 63(2):417–429CrossRefGoogle Scholar
  64. Verzi DH, Morgan CC, Olivares AI (2015) The history of South American octodontoid rodents and its contribution to evolutionary generalisations. In: Cox PG, Hautier L (eds) Evolution of the rodents: advances in phylogeny, functional morphology and development. Cambridge University Press, CambridgeGoogle Scholar
  65. Vizcaíno SF, Cassini GH, Toledo N, Bargo MS (2012) On the evolution of large size in mammalian herbivores of Cenozoic faunas of Southern South America. In: Patterson BD, Costa LP (eds) Bones, clones, and biomes. The history and geography of recent neotropical mammals. The University of Chicago Press, Chicago, pp 76–101CrossRefGoogle Scholar
  66. Voloch CM, Vilela JF, Los-Oliveira L, Schrago CG (2013) Phylogeny and chronology of the major lineages of New World Hystricognath rodents: insights on the biogeography of the Eocene/Oligocene arrival of mammals in South America. BMC Res Notes 6:160CrossRefGoogle Scholar
  67. Voss RS, Hubbard C, Jansa SA (2013) Phylogenetic relationships of New World porcupines (Rodentia, Erethizontidae); implications for taxonomy, morphological evolution and biogeography. Am Mus Novit 3769:1–36CrossRefGoogle Scholar
  68. Vucetich MG, Pérez ME (2011) The putative cardiomyines (Rodentia, Cavioidea) of the middle Miocene of Patagonia (Argentina) and the differentiation of the family Hydrochoeridae. J Vertebr Paleontol 31(6):1382–1386CrossRefGoogle Scholar
  69. Vucetich MG, Verzi DH, Hartenberger J-L (1999) Review and analysis of the radiation of the South American Hystricognathi (Mammalia, Rodentia). Palaeontology 329:763–769Google Scholar
  70. Vucetich MG, Deschamps CM, Pérez ME (2013a) Paleontology, evolution and systematics of capybara. In: Moreira JR, Ferraz KMPMB, Herrera EA, Macdonald DW (eds) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New York, pp 39–59CrossRefGoogle Scholar
  71. Vucetich MG, Deschamps CM, Pérez ME, Montalvo CI (2013b) The taxonomic status of the Pliocene capybaras (Rodentia) Phugatherium Ameghino and Chapalmatherium Ameghino. Ameghiniana 51(3):173–183CrossRefGoogle Scholar
  72. Wood AE (1949) A new Oligocene rodent genus from Patagonia. Am Mus Novit 1435:1–54Google Scholar
  73. Woods CA (1973) Erethizon dorsatum. Mamm Species 29:1–6CrossRefGoogle Scholar
  74. Woods CA (1982) The history and classification of South American hystricognath rodents: reflections on the far away and long ago. In: Mares M, Genoways H (eds) Mammalian biology in South America. University of Pittsburgh Press, PittsburghGoogle Scholar
  75. Woods CA, Kilpatrick CW (2005) Infraorder Hystricognathi. In: Wilson DE, Reeder DAM (eds) Mammal species of the world: a taxonomic and geographic reference. The Johns Hopkins University Press, Baltimore, pp 1538–1600Google Scholar
  76. Wyss AR, Flynn JJ, Norell MA, Swisher CC III, Charrier R, Novacek MJ, McKenna MC (1993) South America’s earliest rodent and recognition of a new interval of mammalian evolution. Nature 365:434–437CrossRefGoogle Scholar
  77. Wyss AR, Flynn JJ, Norell MA, Swisher CC III, Novacek MJ, McKenna MC, Charrier R (1994) Paleogene mammals from the Andes of Central Chile: a preliminary taxonomic, biostratigraphic and geochronologic assessment. Am Mus Novit 3098:1–31Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Defler
    • 1
  1. 1.Department of BiologyNational University of Colombia, BogotaBogotaColombia

Personalised recommendations