Early Cenozoic Mammals in South America

  • Thomas Defler
Part of the Topics in Geobiology book series (TGBI, volume 42)


This is a description of the earliest (Paleocene-Eocene) mammalian assemblages known for the South American Cenozoic. These include complete discussions of the Tiupampan, Peligran, Itaboraian, and Riochican South American Mammal Ages (SALMAs). While the Tiupampan and Peligran SALMAs are the earliest assemblages and are placed in the Paleocene, recent dating places the Itaboraian and Riochican SALMAs in the Early Eocene. These assemblages contain the most ancient mammalian groups, the marsupials and native ungulates. These groups apparently arrived in South America from North America, perhaps in the latter part of the Cretaceous before the beginning of the Cenozoic. These faunas also contain other elements from North America and from the ancient Mesozoic mammalian fauna, which then become extinct in South America through competition with the more advanced northern groups. Several subgroups of marsupials and ungulates make their first appearance, as well as the first xenarthrans. A South American platypus demonstrates the ancient connection of South America to Australia, via Antarctica, and the early metatheres and ungulates exhibit clear connections to North America, though the exact date of their arrival and the route taken are not very clear. Nevertheless, the diversity of these mammals exhibited in the Tiupampan SALMA argues for an early arrival, perhaps even before the K/T boundary.


  1. Arenillas I, Arz JA, Grajales-Nishimura JM, Murillo-Muñetón G, Alvarez W, Camargo-Zanoguera A, Molina E, Rosales-Domínguez C (2006) Chicxulub impact event is Cretaceous/Paleogene boundary in age: new micropaleontological evidence. Earth Planet Sci Lett 249:241–257CrossRefGoogle Scholar
  2. Argot C (2001) Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 247:51–79CrossRefGoogle Scholar
  3. Argot C (2002) Functional-adaptive analysis of the hind limb anatomy of extant marsupials and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 253:76–108CrossRefGoogle Scholar
  4. Argot C (2003a) Functional adaptations of the postcranial skeleton of two Miocene borhyaenoids (Mammalia, Metatheria), Borhyaena and Prothylacinus, from South America. Palaeontology 46(6):1213–1267CrossRefGoogle Scholar
  5. Argot C (2003b) Functional-adaptive anatomy of the axial skeleton of some extant marsupials and the Paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. J Morphol 255:279–300CrossRefGoogle Scholar
  6. Argot C (2003c) Postcranial functional adaptations in the South American Miocene borhyaenoids (Mammalia, Metatheria): Cladosictis, Pseudonotictis and Sipalocyon. Alcheringa 27(4):303–356. Scholar
  7. Asher RJ, Horovitz I, Sánchez-Villagra MR (2004) First combined cladistics analysis of marsupial mammal interrelationships. Mol Phylogenet Evol 33:240–250CrossRefGoogle Scholar
  8. Beck RMD, Godthelp H, Weisbecker V, Archer M, Hand SJ (2008) Australia’s oldest marsupial fossils and their biogeographical implications. PLoS One 3(3):e1858. Scholar
  9. Bergqvist LP (2008) Postcranial skeleton of the upper Paleocene (Itaboraian) “Condylarthra” (Mammalia) of Itaboraí basin, Brazil. In: Sargis EJ, Dagosto M (eds) Mammalian evolutionary morphology: a tribute to Frederick S. Szalay. Springer, New York, pp 107–133CrossRefGoogle Scholar
  10. Bergqvist LP, Mansur K, Rodriguez MA, Rodriguez-Francisco BH, Perez R, Beltrãu MdaC (2000) Itaboraí basin, state of Rio de Janeiro. 123:1–19Google Scholar
  11. Bergqvist LP, Abrantes EA, Dos Santos AL (2004) The Xenarthra (Mammalia) of Sao José de Itaboraian basin (upper Paleocene, Itaboraian), Rio de Janeiro, Brazil. Geodiversitas 26(2):323–337Google Scholar
  12. Billet G (2010) New observations on the skull of Pyrotherium(Pyrotheria, Mammalia) and new phylogenetic hypotheses on South American ungulates. J Mamm Evol 17(1):21–59CrossRefGoogle Scholar
  13. Billet G, de Muizon C (2013) External and internal anatomy of a petrosal from the late Paleocene of Itaboraí, Brazil, referred to Notoungulata (Placentalia). J Vertebr Paleontol 33(2):455–469CrossRefGoogle Scholar
  14. Bonaparte JF, Van Valen L, Kramarz A (1993) La Fauna Local de Punta Peligro, Paleoceno inferior, de la provincia de Chubut, Patagonia, Argentina. Evol Monogr 14:1–61Google Scholar
  15. Bond M, Carlini AA, Goin FJ, Legarreta L, Ortiz-Jaureguizar E, Pascual R, Uliana MA (1995) Episodes in South American land mammal evolution and sedimentation: testing their apparent concurrence in a Palaeocene succession from Central Patagonia. VI Congreso Argentino de Paleontología y Bioestratigrafía, Actas, pp 47–58Google Scholar
  16. Case JA, Woodburne MO (1986) South American marsupials: a successful crossing of the Cretaceous-Tertiary boundary. PALAIOS 1:413–416CrossRefGoogle Scholar
  17. Cifelli RL (1983) The origin and affinities of the South American Condylarthra and early Tertiary Litopterna (Mammalia). Am Mus Novit 2772:1–49Google Scholar
  18. Cifelli RL (1993) The phylogeny of the naïve South American ungulates. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal phylogeny: placentals. Springer, New York, pp 195–216CrossRefGoogle Scholar
  19. Clyde WC, Wilf P, Iglesias A, Slingerland RL et al (2014) New age constraints for the Salamanca Formation and lower Río Chico Group in the western San Jorge Basin, Patagonia, Argentina: Implications for cretaceous-Paleogene extinction recovery and land mammal age correlations. GSA Bull 126(3-4):289–306. Scholar
  20. Cowen R (1999) The K-T extinction. University of Berkeley, California. In: History of life. Blackwell Scientific Publications, Cambridge, MA. Accessed 10 Nov 2012
  21. Crisci JV, Cigliano MM, Morrone JJ (1991) A comparative review of cladistic approaches to historical biogeography of southern South America. Aust Syst Bot 4:117–126CrossRefGoogle Scholar
  22. de Muizon C (1991) La fauna de mamíferos de Tiupampa (Paleoceno inferior, Formación Santa Lucía), Bolivia. In: Suárez Soruco R (ed) Fósiles y facies de Bolivia, vol 1. Vertebrados. Revista Técnica de Yacimientos Petrolíferos Fiscales Bolivianos 12/3–4:575–624Google Scholar
  23. de Muizon D (1994) A new carnivorous marsupial from the Paleocene of Bolivia and the problem of marsupial monophyly. Nature 370:208–211CrossRefGoogle Scholar
  24. de Muizon D (1998) Mayulestes ferox, a boryhaenoid (Metatheria, Mammalia) from the early Palaeocene of Bolivia. Phylogenetic and palaeobiologic implications. Geodiversitas 20:19–142Google Scholar
  25. de Muizon C, Cifelli RL (2000) The “condylarths” (archaic Ungulata, Mammalia) from the early Palaeocene of Tiupampa (Bolivia): implications on the origin of the South American ungulates. Geodiversitas 22(1):47–150Google Scholar
  26. de Muizon C, Cifelli RL (2001) A new basal “Didelphoid” (Marsupialia, Mammalia) from the early Paleocene of Tiupampa (Bolivia). J Vertebr Paleontol 21(1):87–97CrossRefGoogle Scholar
  27. de Muizon C, Marshall LG (1991) Nouveaux Condylarthres du paléocene inférieur de Tiupampa (Bolivie). Muséum national d’histoire naturelle 13(3/4):201Google Scholar
  28. de Muizon C, Marshall LG (1992) Alcidedorbignya inopinata (Mammalia: Pantodonta) from the Early Paleocene of Bolivia: phylogenetic and paleobiogeographic implications. J Paleontol 66(3):499–520CrossRefGoogle Scholar
  29. de Muizon C, Gayet M, Lavenu A, Marshall LG, Sigé B, Villarroel C (1983) Late Cretaceous vertebrates, including mammals from Tiupampa, southcentral Bolivia. Geobios 16(6):747–753CrossRefGoogle Scholar
  30. de Muizon C, Billet G, Argot C, Ladevéze S, Goussard F (2015) Alcidedorbignya inopinata, a basal pantodont (Placentalia, Mammalia) from the early Palaeocene of Bolivia: anatomy, phylogeny and palaeobiology. Geodiversitas 37(4):397–634CrossRefGoogle Scholar
  31. de Muizon C, Ladevèze S, Selva C, Vignaud R, Goussard F (2018) Allqokirus australis (Sparassodonta, Metatheria) from the early Palaeocene of Tiupampa (Bolivia) and the rise of the metatherian carnivorous radiation in South America. Geodiversitas 40 (in press)CrossRefGoogle Scholar
  32. Flynn JJ, Swisher CC (1995) Cenozoic South American land mammal ages: correlation to global geochronologies. In: Berggren WA (ed) Geochronology time scales and global stratigraphic correlation. SEPM Special Publication No. 54, SEPM Society for Sedimentary, Tulsa, pp 317–333CrossRefGoogle Scholar
  33. Flynn JJ, Wyss AR (1998) Recent advances in South American mammalian paleontology. Trends Ecol Evol 12:449–454CrossRefGoogle Scholar
  34. Forasiepi AM, Rougier G (2009) Additional data on early Paleocene metatherians (Mammalia) from Punta Peligro (Salamanca Formation, Argentina): comments based on petrosal morphology. J Zool Syst Evol Res 47(4):391–398CrossRefGoogle Scholar
  35. Gelfo JN, Pascual R (2001) Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation. Geodiversitas 23(3):369–379Google Scholar
  36. Gelfo JN, Goin FJ, Woodburne MO, de Muizon C (2009) Biochronological relationships of the earliest South American Paleogene mammalian faunas. Palaeontology 52(1):251–269CrossRefGoogle Scholar
  37. Goin FJ, Oliveira EV, Candela AM (1998) Carolocoutoia ferigoloi nov. gen. and sp. (Protodidelphidae), a new Paleocene “opossum-like” marsupial from Brazil. Palaeovertebrata 27(3–4):145–154Google Scholar
  38. Goin FJ, Pascual R, Tejedor MF, Gelfo JN, Woodburne MO, Case JA, Reguro MA, Bond M, López GM, Cione A, Udrizar Sauthier D, Balarino L, Scasso RA, Medina FA, Ubaldón MC (2006) The earliest Tertiary therian mammal from South America. J Vertebr Paleontol 26(2):505–510CrossRefGoogle Scholar
  39. Goin FJ, Woodburne MO, Zimicz AN, Martin GM (2016) A brief history of South American metatherians: evolutionary contexts and intercontinental dispersals. Springer, New York, 246 pCrossRefGoogle Scholar
  40. Gunnell GF, Bown TM, Bloch JI, Boyer DM (2007) Proteutheria. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of Tertiary Mammals of North America, vol 2. Cambridge University Press, Cambridge, pp 63–81Google Scholar
  41. Horovitz I, Sánchez-Villagra MR (2003) A morphological analysis of marsupial mammal higher-level phylogenetic relationships. Cladistics 19:181–212CrossRefGoogle Scholar
  42. Iglesias A, Artabe AE, Morel EM (2011) The evolution of Patagonian climate and vegetation from the Mesozoic to the present. Biol J Linn Soc 103:409–422. Scholar
  43. Jehle M (2006) Paleocene mammals of the world. Accessed 2014
  44. Keller G (2014) Deccan volcanism, the Chicxulub impact, and the end-Cretaceous mass extinction: coincidence? Cause and effect? In: Keller G, Kerr AC (eds) Volcanism, impacts, and mass extinctions: causes and effects, GSA special papers, vol 505. Geological Society of America, Boulder, pp 29–55. Scholar
  45. Kemp TS (2005) The origin and evolution of mammals. Oxford University Press, OxfordGoogle Scholar
  46. Kramarz A, Bond M (2013) On the status of Isolophodon Roth, 1903 (Mammalia, Astrapotheria) and other little-known Paleogene astrapotheres from Central Patagonia. Geobios 46:203–211CrossRefGoogle Scholar
  47. Krause JM, Clyde WC, Ibañez-Mejía M, Schmitz MD, Barnum T, Bellosi E, Wilf P (2017) New age constraints for early Paleogene strata of Central Patagonia, Argentina: implications for the timing of South American Land Mammal Ages. Geol Soc Am Bull 129(7/8):886–903. Scholar
  48. Ladevèze S, de Muizon C, Beck MD, Germain D, Cespedes-Paz R (2011) Earliest evidence of mammalian social behavior in the basal Tertiary of Bolivia. Nature 474:83–86CrossRefGoogle Scholar
  49. Li ZX, Powell CMA (2001) An outline of the paleogeographic evolution of the Australasian region since the beginning the Neoproterozoic. Earth Sci Rev 53(3–4):237–277CrossRefGoogle Scholar
  50. MacLeod N, Rawson PF, Forey PL, Banner FT, Boudagher-Fadel MK, Bown PR, Burnett JA, Chambers P, Culver S, Evans SE, Jeffery C, Kaminski MA, Lord AR, Milner AC, Milner AR, Morris N, Owen E, Rosen BR, Smith AB, Taylor PD, Urquhart E, Young JR (1997) The Cretaceous-Tertiary biotic transition. J Geol Soc Lond 154(2):265–292CrossRefGoogle Scholar
  51. Marshall LG (1977) Cladistic analysis of borhyaneoid, dasyuroid, didelphoid, and thylacinid (Marsupialia: Mammalia) affinity. Syst Zool 26:410–425CrossRefGoogle Scholar
  52. Marshall LG, Muizon C (1988) The dawn of the age of mammals in South America. Natl Geogr Res 4:23–55Google Scholar
  53. Marshall LG, Hoffstetter R, Pascual R (1983) Mammals and stratigraphy: geochronology of the continental mammal-bearing Tertiary of South America. Palaeovertebrata, Montpellier, Mem, Extr, pp 1–93Google Scholar
  54. Marshall LG, de Muizon C, Sigogneau-Russell D (1995) Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia. Muséum national d’Histoire naturelle, Paris, 164 p. (Mémoires du Muséum national d’Histoire naturelle, 165)Google Scholar
  55. Marshall LG, Sempere T, Butler RF (1997) Chronostratigraphy of the mammal-bearing Paleocene of South America. J S Am Earth Sci 10(1):49–70CrossRefGoogle Scholar
  56. McKenna MC, Bell SK (1997) Classification of mammals above the species level. Columbia University Press, New York, p 211Google Scholar
  57. Meredith RW, Westerman M, Case JA, Springer MS (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mamm Evol 15:1–36CrossRefGoogle Scholar
  58. Moreira-Muñoz A (2007) The Austral floristic realm revisited. J Biogeogr 34:1649–1660CrossRefGoogle Scholar
  59. Muizon C, Brito I (1993) Le basin calcaire de Sao Jose de Itaborai (Rio de Janeiro, Bresil): les relaciones faunique avec le site de Tiupampa (Cochabamba, Bolivie). Ann Paleontol 79:233–269Google Scholar
  60. Nilsson MA, Arnason U, Spencer PBS, Janke A (2004) Marsupial relationships and a timeline for marsupial radiation in South Gondwana. Gene 340:189–196CrossRefGoogle Scholar
  61. Nilsson MA, Churakov G, Sommer M, Tran NV, Zemann A et al (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8(7):e1000436. Scholar
  62. Oliveira EV, Goin FJ (2011) A reassessment of bunodont metatherians from the Paleogene of Itaboraí (Brazil): systematics and age of the Itaboraian Salma. Rev Bras Paleontolog 14(2):105–136CrossRefGoogle Scholar
  63. Pascual R, Ortiz-Jaureguizar E (1990) Evolving climates and mammal faunas in Cenozoic South America. J Hum Evol 19:23–60Google Scholar
  64. Pascual R, Ortiz-Jaureguizar E (1991a) Evolutionary pattern of land mammal faunas during the late Cretaceous and Paleocene in South America: a comparison with the North American pattern. Ann Zool Fenn 28(3/4):245–252Google Scholar
  65. Pascual R, Ortiz-Jaureguizar E (1991b) The Gondwanan and South American episodes: two major and unrelated moments in the history of the South American mammals. J Hum Evol 19:23–60CrossRefGoogle Scholar
  66. Pope KO, Baines KH, Ocampo AC (1999) Impact winter and the Cretaceous/Tertiary extinctions: results of a Chicxulub asteroid impact model. Earth Planet Sci Lett 128:719–725CrossRefGoogle Scholar
  67. Prothero DR, Manning EM, Fischer M (1988) The phylogeny of the ungulates. In: Benton MJ (ed) The phylogeny and classification of the tetrapods. 2: Mammals. Systematics Association Special Volume 35B. Clarendon Press, Oxford, pp 201–234Google Scholar
  68. Pascual R, Ortiz-Jaureguizar E (2007) The Gondwanan and South American episodes: two major and unrelated moments in the history of the South American mammals. J Mammal Evol 14(2):75–137CrossRefGoogle Scholar
  69. Renne PR, Deino AL, Hilgen FJ, Kuiper KF, Mark DF, Mitchell WS III, Morgan LE, Mundil R, Smit J (2013) Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339(6120):684–687. Scholar
  70. Rose KD (2006) The beginning of the age of mammals. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  71. Rougier GW, Wible JR, Novacek MJ (1998) Implications of Deltatheridium specimens for early marsupial history. Nature 396:459–463CrossRefGoogle Scholar
  72. Schulte P, Alegret L, Arenillas I et al. (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218CrossRefGoogle Scholar
  73. Simpson GG (1967) The meaning of evolution: a study of the history of life and its significance for man. Yale University Press, New HavenGoogle Scholar
  74. Simpson GG (1980) Splendid isolation: the curious history of South American mammals. Yale University Press, New HavenGoogle Scholar
  75. Simpson GG (1935a) Descriptions of the oldest known South American mammals, from the Río Chico Formation. Am Mus Novitates no. 793, p 25Google Scholar
  76. Simpson GG (1935b) Early and middle Tertiary geology of the Gaiman region, Chubut, Argentina. American Museum novitates no. 775, p 30Google Scholar
  77. Springer MS, Westerman M, Kavanagh JR, Burk A, Woodburne MO, Kao DJ, Krajewski C (1998) The origin of the Australasian marsupial fauna and the phylogenetic affinities of the enigmatic monito del monte and the marsupial mole. Proc R Soc Lond Ser B 265:2381–2386CrossRefGoogle Scholar
  78. Taylor KWR, Hollis CJ, Pancost RD (2011) Reconstructing post Cretaceous/Paleogene boundary climate and ecology at mid-Waipara River and Branch Stream, New Zealand. Berichte Geol B-A 85 (ISSN 1017-8880) – CBEP 2011, Salzburg, 5–8 JuneGoogle Scholar
  79. Woodburne MO, Case JA (1996) Dispersal, vicariance, and the late Cretaceous to early Tertiary land mammal biogeography from South America to Australia. J Mammal Evol 3(2):121–161CrossRefGoogle Scholar
  80. Woodburne MO, Goin FJ, Raigemborn MS et al (2014) Revised timing of the South American early Paleogene land mammal ages. J S Am Earth Sci 54:109–119CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Defler
    • 1
  1. 1.Department of BiologyNational University of Colombia, BogotaBogotaColombia

Personalised recommendations