Advertisement

Pleistocene Mammal Communities and Their Extinction

  • Thomas Defler
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 42)

Abstract

During the Pleistocene the diversity of mammals in South America became extremely elevated. It seems that hyperdiversity reached the highest known in the world. There has been nowhere else where so many (about 37) megamammals (weighing more than 1000 kg) were found, all of which became extinct, during the last 8000–9000 years ago. Another 44 species or so of large mammals weighing more than 45 kg and less than 1000 kg also became extinct. Of course ecological factors played a huge role in leveling this out-of-balance fauna, but the intriguing question has always been about the role that human beings had to cause these mammals to go extinct. Since we are unsure of the date of arrival of human beings (which might have begun as early as 40,000 years ago), it is difficult to put an exact date on the beginning of this new ecological pressure, but between 12,000 and 8000 years ago, the last extinctions occurred, when we know that humans were living widely throughout the continent.

References

  1. Ab’Sáber AN (1982) The paleoclimate and paleoecology of Brazilian Amazonia. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 41–59Google Scholar
  2. Absy ML, van der Hammen T (2001) Some palaeoecological data from Rondonia, southern part of the Amazon Basin. Acta Amazon 6(3):293–299CrossRefGoogle Scholar
  3. Alberdi MT, Prado JL (1993) Review of the genus Hippidion Owen, 1869 (Mammalia: Perissodactyla) from the Pleistocene of South America. Zool J Linn Soc Lond 108:1–22CrossRefGoogle Scholar
  4. Anhuf D, Da Cruz FW Jr, Cordeiro RC, Van der Hammen T, Karmann I, Marengo JA, De Oliveira PE, Pessenda L, Siffedine A, Albuquerque AL, Da Silva Dias PI, Ledru MP, Behling H (2006) Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr Palaeoclimatol Palaeoecol 239:510–527CrossRefGoogle Scholar
  5. Barnosky AD, Lindsey EL (2010) Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quat Int 217:10–29CrossRefGoogle Scholar
  6. Barnosky AD, Koch PL, Reranec RS, Wing SL, Shabel AB (2004) Assessing the causes of late Pleistocene extinctions on the continents. Science 306:70–75CrossRefGoogle Scholar
  7. Barnosky AD, Lindsey EL, Villavicencio NA, Bostelmann E, Hadly EA, Wanket J, Marshall CR (2016) Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc Natl Acad Sci U S A 113(4):856–861CrossRefGoogle Scholar
  8. Behling H, Berrio JC, Hooghiemstra H (1999) Late Quaternary pollen records from the middle Caquetá river basin in central Colombian Amazon. Palaeogeogr Palaeoclimatol Palaeoecol 145:193–213CrossRefGoogle Scholar
  9. Blois JL, McGuire JL, Hadly EA (2010) Small mammal diversity loss in response to late-Pleistocene climatic change. Nature 465(7299):771–774CrossRefGoogle Scholar
  10. Bonaccorso E, Koch I, Townsend Peterson A (2006) Pleistocene fragmentation of Amazon species’ ranges. Divers Distrib 12:157–164CrossRefGoogle Scholar
  11. Borrero LA (2009) The elusive evidence: the archeological record of the South American megafauna. In: Haynes G (ed) American megafaunal extinctions at the end of the Pleistocene. Springer, New York, pp 145–168CrossRefGoogle Scholar
  12. Bryan A, Casamiquela J, Cruxent J, Gruhn R, Ochsenius C (1978) An El Jobo Mastodon Kill at Taima-Taima, Venezuela. Science 200:1275–1277. https://doi.org/10.1126/science.200.4347.1275. PMid:17738722CrossRefGoogle Scholar
  13. Campbell KE Jr, Frailey DC, Romero-Pittman L (2000) The late Miocene gomphothere Amahuacatherium peruviam (Proboscidea: Gomphotheriidae) from Amazonian Peru: implications for the great American faunal interchange. Boletin-Instit Geol Minero y Metalúrgico Serie D: Estudios Regionales 23:1–152Google Scholar
  14. Campbell KE Jr, Frailey DC, Romero-Pittman L (2009) In defense of Amahuacatherium (Proboscidae: Gompohotheriidae). Neues Jahrb Geol P-A 252:113–128Google Scholar
  15. Campbell KE Jr, Prothero DR, Romero-Pittman L, Hertel F, Rivera N (2010) Amazonian magnetostratigraphy: dating the first pulse of the great American faunal interchange. J S Am Earth Sci 29(3:619–626CrossRefGoogle Scholar
  16. Campbell KE Jr, Heizler M, Frailey CD, Romero-Pittman L, Prothero DR (2001) Upper Cenozoic chronostratigraphy of the southwestern Amazon Basin. Geology 29(7):595–598CrossRefGoogle Scholar
  17. Cardillo M (2003) Biological determinants of extinction risk: why are smaller species less vulnerable. Anim Conserv 6:63–69CrossRefGoogle Scholar
  18. Carneiro Filho A, Schwartz D, Tatumi SH, Rosique T (2002) Amazonian paleodunes provide evidence for drier climate phases during the late Pleistocene-Holocene. Quat Res 58:2005–2009Google Scholar
  19. Cassels R (1984) Faunal extinction and prehistoric man in New Zealand and the Pacific islands. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 741–767Google Scholar
  20. Cione AL, Tonni EP, Soibelzon L (2003) The broken zig-zag: Late Cenozoic large mammal and tortoise extinction in South America. Rev Mus Argentino Cienc Nat 5(1):1–19Google Scholar
  21. Cione AL, Tonni EP, Soibelzon L (2009) Did humans cause the late Pleistocene-Early Holocene mammalian extinctions in South America in a context of shrinking open areas? In: Haynes G (ed) American megafaunal extinctions at the end of the Pleistocene. Springer, New York, pp 125–144CrossRefGoogle Scholar
  22. Colinvaux PA (1996) Quaternary environmental history and forest diversity in the neotropics. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 359–405Google Scholar
  23. Colinvaux PA, De Oliveira PE (2001) Amazon plant diversity and climate through the Cenozoic. Palaeogeogr Palaeoclimatol Palaeoecol 166:51–63CrossRefGoogle Scholar
  24. Colinvaux PA, De Oliveira PE, Bush MB (2000) Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat Sci Rev 19:141–169CrossRefGoogle Scholar
  25. de Vivo M, Carmignotto AP (2004) Holocene vegetation change and the mammal faunas of South America and Africa. J Biogeogr 31:943–957CrossRefGoogle Scholar
  26. Da Fonseca GAB, Mittermeier RA, Cavalcanti RB, Mittermeier CG (1999) The Brazilian cerrado. In: Mittermeier RA, Myers N, Robles Gil P, Goettsch Mittermeier C (eds) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, MéxicoGoogle Scholar
  27. Dewar RE (1984) Extinctions in Madagascar: the loss. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 574–593Google Scholar
  28. Diamond J (1984) Historic extinction: a Rosetta Stone for understanding prehistoric extinctions. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 824–862Google Scholar
  29. Eiten G (1972) The cerrado vegetation of Brazil. Bot Rev 38(2):201–341CrossRefGoogle Scholar
  30. Fahrig L (1997) Relative effects of habitat loss and fragmentation on population extinction. J Wildl Manag 61(3):603–610CrossRefGoogle Scholar
  31. Fahrig L (2003) Effect of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  32. Ficcarelli G, Borselli V, Herrera G, Moreno Espinosa M, Torre D (1995) Taxonomic remarks on the South America mastodons referred to Haplomastodon and Cuvieronius. Geobios 28(6):745–756CrossRefGoogle Scholar
  33. Frailey CD, Campbell KE Jr (2012) Two new genera of peccaries (Mammalia, Artiodactyla, Tayassuidae) from upper Miocene deposits of the Amazon basin. J Paleontol 86(5):852–877CrossRefGoogle Scholar
  34. Gingerich PD (1984) Pleistocene extinctions in the context of origination-extinction equilibria in Cenozoic mammals. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 211–222Google Scholar
  35. Graham RW, Lundelius EL Jr (1984) Coevolutionary disequilibrium and Pleistocene extinctions. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 223–249Google Scholar
  36. Gruhn R, Bryan AL (1984) The record of Pleistocene megafaunal extinctions at Taima-taima, northern Venezuela. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 128–137Google Scholar
  37. Gutiérrez MA, Martinez GA (2008) Trends in the faunal human exploitation during the late Pleistocene and early Holocene in the Pampean region (Argentina). Quat Int 191:53–68CrossRefGoogle Scholar
  38. Haberle SG, Maslin MA (1999) Late Quaternary vegetation and climate change in the Amazon basin based on a 50,000 year pollen record from the Amazon fan, ODP Site 932. Quat Res 51:27–38CrossRefGoogle Scholar
  39. Hoorn C (1997) Palynology of the Pleistocene glacial/interglacial cycles of the Amazon fan (Holes 940A, 944A, and 946A). In: Flood RD, DJW P, Klaus A, Peterson LC (eds) Proceedings of the ocean drilling program, scientific results, vol 155. Ocean Drilling Program, College StationGoogle Scholar
  40. Iriondo M (1997) Models of deposition of loess and loessoids in the upper Quaternary of South America. J S Am Earth Sci 10(1):71–79CrossRefGoogle Scholar
  41. Iriondo M (1999) Climatic changes in the South American plains: records of a continental-scale oscillation. Quat Int 57/58:93–112CrossRefGoogle Scholar
  42. Iriondo M, Garcia NO (1993) Climatic variations in the Argentine plains during the last 18,000 years. Palaeogeogr Palaeoclimatol Palaeoecol 101:209–220CrossRefGoogle Scholar
  43. Johnson CN (2002) Determinants of loss of mammal species during the Late Quaternary “megafauna” extinctions: life history and ecology, but not body size. Proc R Soc Lond B 269:2221–2130CrossRefGoogle Scholar
  44. Kastner TP, Goñi MA (2003) Constancy in the vegetation of the Amazon Basin during the late Pleistocene: evidence from the organic matter composition of Amazon deep sea fan sediments. Geology 31(4):291–294CrossRefGoogle Scholar
  45. Kiltie RA (1984) Seasonality, gestation time and large mammal extinctions. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 299–314Google Scholar
  46. Lessa EP, Fariña RA (1996) Reassessment of extinction patterns among the late Pleistocene mammals of South America. Palaeontology 39:651–662Google Scholar
  47. Lessa EP, Van Valkenburgh B, Fariña RA (1997) Testing hypotheses of differential mammalian extinctions subsequent to the great American biotic interchange. Palaeogeogr Palaeoclimatol Palaeoecol 135:157–162CrossRefGoogle Scholar
  48. Lyons SK, Smith FA, Brown JH (2004) Of mice, mastodons and men: human-mediated extinctions on four continents. Evol Ecol Res 6:339–358Google Scholar
  49. MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, PrincetonGoogle Scholar
  50. MacFadden BJ (2005) Diet and habitat of toxodont megaherbivores (Mammalia, Notoungulata) from the late Quaternary of South and Central America. Quat Res 64:113–124CrossRefGoogle Scholar
  51. Martin PS (1984) Prehistoric overkill: the global model. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 354–403Google Scholar
  52. Martin PS (1986) Refuting late Pleistocene extinction models. In: Elliot DK (ed) Dynamics of extinction. Wiley, New York, pp 197–109Google Scholar
  53. Miotti L, Salemme M (1999) Biodiversity, taxonomic richness and specialists-generalists during late Pleistocene/early Holocene times in Pampa and Patagonia (Argentina, Southern South America). Quat Int 53/54:53–68CrossRefGoogle Scholar
  54. Miotti L, Salemme MC (2003) When Patagonia was colonized: people mobility at high latitudes during Pleistocene/Holocen transition. Quat Int 109–110:95–111CrossRefGoogle Scholar
  55. Moreira JR, Herrera EA, Ferraz KMPMB, Macdonald DW (2013) Capybara: biology, use and conservation of an exceptional neotropical species. Springer, New YorkCrossRefGoogle Scholar
  56. Murray P (1984) Extinctions down-under: a bestiary of extinct Australian late Pleistocene monotremes and marsupials. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 768–780Google Scholar
  57. Olson SL, James HF (1984) The role of Polynesians in the extinction of the avifauna of the Hawaiian islands. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 768–780Google Scholar
  58. Pascual R, Ortiz Jaureguizar E (1990) Evolving climates and mammal faunas in Cenozoic South America. J Hum Evol 19(1–2):23–60CrossRefGoogle Scholar
  59. Patton JL, Pardiñas UFJ, D’Elía G (2015) Mammals of South America, volume 2: rodents. University of Chicago Press, Chicago.Google Scholar
  60. Pim SL (1984) The complexity and stability of ecosystems. Nature 307:321–326CrossRefGoogle Scholar
  61. Pires JM, Prance GT (1985) The vegetation types of the Brazilian Amazon. In: Prance GT, Lovejoy TE (eds) Key environments: Amazonia. Pergamon Press, New York, pp 109–145Google Scholar
  62. Prado JL, Alberdi MT (1996) A cladistics analysis of the horses of the tribe Equini. Palaeontology 39(3):663–680Google Scholar
  63. Rabassa J, Coronato AM, Salemme M (2005) Chronology of the Late Cenozoic Patagonian glaciation and their correlation with biostratigraphic units of the Pampean region (Argentina). J S Am Earth Sci 20:81–103CrossRefGoogle Scholar
  64. Rancy A (1991) Pleistocene mammals and paleoecology of the western Amazon. PhD dissertation, University of Florida, GainsevilleGoogle Scholar
  65. Rancy A (1999) Fossil mammals of the Amazon as a portrait of a Pleistocene environment. In: Eisenberg JF, Redfored KH (eds) Mammals of the neotropics: the central neotropics: Volume 3, Ecuador, Peru, Bolivia, Brazil. The University of Chicago Press, Chicago, pp 20–26Google Scholar
  66. Salgado-Labouriau ML (1982) Climate change at the Pleistocene-Holocene boundary. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 74–77Google Scholar
  67. Thébault E, Huber V, Loreau M (2006) Cascading extinctions and ecosystem functioning: contrasting effects of diversity depending on food web structure. Oikos 116(1):163–173CrossRefGoogle Scholar
  68. Thébault E, Huber V, Loreau M (2007) Cascading extinctions and ecosystem functioning: contrasting effects of diversity depending on food web structure. Oikos 116:163–173CrossRefGoogle Scholar
  69. Van der Hammen T (1982) Paleoecology of tropical South America. In: Prance GT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 60–66Google Scholar
  70. Van der Hammen T, Absy ML (1994) Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109:247–261CrossRefGoogle Scholar
  71. Van der Hammen T, Hooghiemstra H (2000) Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat Sci Rev 19:725–742CrossRefGoogle Scholar
  72. Van der Hammen T, Duivenvoorden JF, Lips JM, Urrego LE, Espejo N (1992) Late Quaternary of the middle Caquetá River area (Colombian Amazonia). J Quat Sci 7(1):45–55CrossRefGoogle Scholar
  73. Vonhof HB, Kaandorp RJG (2010) Climate variation in Amazonia during the Neogene and the Quaternary. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 201–210Google Scholar
  74. Webb SD, Rancy A (1996) Late Cenozoic evolution of the neotropical mammal fauna. In: Jackson JBC, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 335–358Google Scholar
  75. Weinstock J, Willerslev E, Sher A, Tong W, Ho SYW et al (2005) Evolution, systematics, and phylogeography of Pleistocene horses in the New World: a molecular perspective. PLoS Biol 3(8):1373–1379CrossRefGoogle Scholar
  76. Whittington SL, Dyke B (1984) Simulating overkill: experiments with the Mosimann and Martin Model. In: Martin PS, Klein RG (eds) Quaternary extinctions: a prehistoric revolution. The University of Arizona Press, Tucson, pp 451–465Google Scholar
  77. Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. The John Hopkins University Press, BaltimoreGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Thomas Defler
    • 1
  1. 1.Department of BiologyNational University of Colombia, BogotaBogotaColombia

Personalised recommendations