• Sundeep Singh Bola
  • Fiona Elize Kritzinger
  • Indra NarangEmail author


Advancements in neonatal care over the past few decades have resulted in significant improvements in survival of increasingly preterm infants. This success in acute neonatal care requires increasing knowledge about the physiology of breathing in preterm infants both during wakefulness and sleep and the long-term implications of premature birth on sleep.

In this chapter, we will review the basics of ventilatory control with specific attention to the unique aspects in the preterm infant. Examination of how the preterm infant responds to changes in oxygen, carbon dioxide, and hydrogen ion homeostasis will facilitate an understanding of sleep-disordered breathing in this population. This chapter will focus on periodic breathing, apnea of prematurity, the relationship between gastroesophageal reflux and apnea, and sudden infant death syndrome, as well as discussion regarding the long-term implications of preterm birth on breathing during sleep.


Preterm Ventilation Hypoxia Apnea of prematurity Periodic breathing Sudden infant death syndrome 



Bronchopulmonary dysplasia


Bayley Score of Infant Development


Confidence interval


Gestational age


Intraventricular hemorrhage




Randomized controlled trial


Reference number


Special care unit


Standard deviation


Sleep-disordered breathing


Very low birth weight


  1. 1.
    World Health Organization. Preterm birth fact sheet. Reviewed Nov 2016.
  2. 2.
    Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, et al. Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. Deliberations of the Sleep Apnea Definitions Task Force of the American Academy of Sleep Medicine. J Clin Sleep Med. 2012;8(5):597–619.Google Scholar
  3. 3.
    Grillner S. Biological pattern generation: the cellular and computational logic of networks in motion. Neuron. 2006;52(5):751–66.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Carroll JL, Agarwal A. Development of ventilatory control in infants. Paediatr Respir Rev. 2010;11(4):199–207.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Smith JC, Abdala AP, Rybak IA, Paton JF. Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond Ser B Biol Sci. 2009;364(1529):2577–87.CrossRefGoogle Scholar
  6. 6.
    Kline DD, King TL, Austgen JR, Heesch CM, Hasser EM. Sensory afferent and hypoxia-mediated activation of nucleus tractus solitarius neurons that project to the rostral ventrolateral medulla. Neuroscience. 2010;167(2):510–27.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Matthews EE, Aloia MS. Cognitive recovery following positive airway pressure (PAP) in sleep apnea. Prog Brain Res. 2011;190:71–88.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Cardot V, Chardon K, Tourneux P, Micallef S, Stephan E, Leke A, et al. Ventilatory response to a hyperoxic test is related to the frequency of short apneic episodes in late preterm neonates. Pediatr Res. 2007;62(5):591–6.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Easton PA, Slykerman LJ, Anthonisen NR. Ventilatory response to sustained hypoxia in normal adults. J Appl Physiol (1985). 1986;61(3):906–11.CrossRefGoogle Scholar
  10. 10.
    Chardon K, Telliez F, Bach V, Leke A, Delanaud S, Bouferrache B, et al. Effects of warm and cool thermal conditions on ventilatory responses to hyperoxic test in neonates. Respir Physiol Neurobiol. 2004;140(2):145–53.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Poets CF. Apnea of prematurity: what can observational studies tell us about pathophysiology? Sleep Med. 2010;11(7):701–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Rigatto H, Brady JP, de la Torre Verduzco R. Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics. 1975;55(5):604–13.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Alvaro R, Alvarez J, Kwiatkowski K, Cates D, Rigatto H. Small preterm infants (less than or equal to 1500 g) have only a sustained decrease in ventilation in response to hypoxia. Pediatr Res. 1992;32(4):403–6.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Weintraub Z, Alvaro R, Kwiatkowski K, Cates D, Rigatto H. Effects of inhaled oxygen (up to 40%) on periodic breathing and apnea in preterm infants. J Appl Physiol (1985). 1992;72(1):116–20.CrossRefGoogle Scholar
  15. 15.
    Gauda EB, Miller MJ, Carlo WA, Difiore JM, Johnsen DC, Martin RJ. Genioglossus response to airway occlusion in apneic versus nonapneic infants. Pediatr Res. 1987;22(6):683–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Frantz ID 3rd, Adler SM, Thach BT, Taeusch HW Jr. Maturational effects on respiratory responses to carbon dioxide in premature infants. J Appl Physiol. 1976;41(1):41–5.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Duffin J. Measuring the ventilatory response to hypoxia. J Physiol. 2007;584(Pt 1):285–93.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Darnall RA. The role of CO(2) and central chemoreception in the control of breathing in the fetus and the neonate. Respir Physiol Neurobiol. 2010;173(3):201–12.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gerhardt T, Bancalari E. Apnea of prematurity: I. Lung function and regulation of breathing. Pediatrics. 1984;74(1):58–62.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Holditch-Davis D, Scher M, Schwartz T, Hudson-Barr D. Sleeping and waking state development in preterm infants. Early Hum Dev. 2004;80(1):43–64.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Scher MS, Johnson MW, Holditch-Davis D. Cyclicity of neonatal sleep behaviors at 25 to 30 weeks’ postconceptional age. Pediatr Res. 2005;57(6):879–82.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Giganti F, Ficca G, Cioni G, Salzarulo P. Spontaneous awakenings in preterm and term infants assessed throughout 24-h video-recordings. Early Hum Dev. 2006;82(7):435–40.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Foreman SW, Thomas KA, Blackburn ST. Individual and gender differences matter in preterm infant state development. J Obstet Gynecol Neonatal Nurs. 2008;37(6):657–65.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Davis DH, Thoman EB. Behavioral states of premature infants: implications for neural and behavioral development. Dev Psychobiol. 1987;20(1):25–38.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ednick M, Cohen AP, McPhail GL, Beebe D, Simakajornboon N, Amin RS. A review of the effects of sleep during the first year of life on cognitive, psychomotor, and temperament development. Sleep. 2009;32(11):1449–58.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Gertner S, Greenbaum CW, Sadeh A, Dolfin Z, Sirota L, Ben-Nun Y. Sleep-wake patterns in preterm infants and 6 month’s home environment: implications for early cognitive development. Early Hum Dev. 2002;68(2):93–102.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Arditi-Babchuk H, Feldman R, Eidelman AI. Rapid eye movement (REM) in premature neonates and developmental outcome at 6 months. Infant Behav Dev. 2009;32(1):27–32.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Holditch-Davis DBM, Edwards LJ. Prediction of 3-year developmental outcomes from sleep development over the preterm period. Infant Behav Dev. 2005;28(2):118–1.CrossRefGoogle Scholar
  29. 29.
    Bastani F, Rajai N, Farsi Z, Als H. The effects of Kangaroo Care on the sleep and wake states of preterm infants. J Nurs Res. 2016;25(3):231–9.Google Scholar
  30. 30.
    Rigatto H. In: Matthew O, editor. Respiratory controls and disorders in the newborn. Boca Raton: CRC Press; 2003.Google Scholar
  31. 31.
    Barrington KJ, Finer NN, Wilkinson MH. Progressive shortening of the periodic breathing cycle duration in normal infants. Pediatr Res. 1987;21(3):247–51.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Rigatto H, Brady JP. Periodic breathing and apnea in preterm infants. I. Evidence for hypoventilation possibly due to central respiratory depression. Pediatrics. 1972;50(2):202–18.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Rigatto H, Brady JP. Periodic breathing and apnea in preterm infants. II. Hypoxia as a primary event. Pediatrics. 1972;50(2):219–28.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Ben-Tal A, Smith JC. Control of breathing: two types of delays studied in an integrated model of the respiratory system. Respir Physiol Neurobiol. 2010;170(1):103–12.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Cherniack NS, Longobardo G, Evangelista CJ. Causes of cheyne-stokes respiration. Neurocrit Care. 2005;3(3):271–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Fowler AC, Kalamangalam GP. The role of the central chemoreceptor in causing periodic breathing. IMA J Math Appl Med Biol. 2000;17(2):147–67.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Cherniack NS, Longobardo GS. Mathematical models of periodic breathing and their usefulness in understanding cardiovascular and respiratory disorders. Exp Physiol. 2006;91(2):295–305.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Edwards BA, Sands SA, Berger PJ. Postnatal maturation of breathing stability and loop gain: the role of carotid chemoreceptor development. Respir Physiol Neurobiol. 2013;185(1):144–55.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Pereira MR, Reis FC, Landriault L, Cates DB, Rigatto H. Profile of alveolar gases during periodic and regular breathing in preterm infants. Biol Neonate. 1995;67(5):322–9.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Barrington KJ, Finer NN. Periodic breathing and apnea in preterm infants. Pediatr Res. 1990;27(2):118–21.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Mohr MA, Fairchild KD, Patel M, Sinkin RA, Clark MT, Moorman JR, et al. Quantification of periodic breathing in premature infants. Physiol Meas. 2015;36(7):1415–27.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Al-Matary A, Kutbi I, Qurashi M, Khalil M, Alvaro R, Kwiatkowski K, et al. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates. Semin Perinatol. 2004;28(4):264–72.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Simakajornboon N, Beckerman RC, Mack C, Sharon D, Gozal D. Effect of supplemental oxygen on sleep architecture and cardiorespiratory events in preterm infants. Pediatrics. 2002;110(5):884–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Decima PF, Fyfe KL, Odoi A, Wong FY, Horne RS. The longitudinal effects of persistent periodic breathing on cerebral oxygenation in preterm infants. Sleep Med. 2015;16(6):729–35.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK, et al. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr. 2010;157(1):69–73.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Di Fiore JM, Martin RJ, Gauda EB. Apnea of prematurity – perfect storm. Respir Physiol Neurobiol. 2013;189(2):213–22.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Pillekamp F, Hermann C, Keller T, von Gontard A, Kribs A, Roth B. Factors influencing apnea and bradycardia of prematurity – implications for neurodevelopment. Neonatology. 2007;91(3):155–61.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Ramanathan R, Corwin MJ, Hunt CE, Lister G, Tinsley LR, Baird T, et al. Cardiorespiratory events recorded on home monitors: comparison of healthy infants with those at increased risk for SIDS. JAMA. 2001;285(17):2199–207.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Martin RJ, Wilson CG. Apnea of prematurity. Compr Physiol. 2012;2(4):2923–31.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Finer NN, Barrington KJ, Hayes BJ, Hugh A. Obstructive, mixed, and central apnea in the neonate: physiologic correlates. J Pediatr. 1992;121(6):943–50.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Henderson-Smart DJ, De Paoli AG. Methylxanthine treatment for apnoea in preterm infants. Cochrane Database Syst Rev. 2010;12:CD000140.Google Scholar
  52. 52.
    Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354(20):2112–21.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Schmidt B. Methylxanthine therapy for apnea of prematurity: evaluation of treatment benefits and risks at age 5 years in the international Caffeine for Apnea of Prematurity (CAP) trial. Biol Neonate. 2005;88(3):208–13.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Dobson NR, Patel RM, Smith PB, Kuehn DR, Clark J, Vyas-Read S, et al. Trends in caffeine use and association between clinical outcomes and timing of therapy in very low birth weight infants. J Pediatr. 2014;164(5):992–8.e3.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357(19):1893–902.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Steer P, Flenady V, Shearman A, Charles B, Gray PH, Henderson-Smart D, et al. High dose caffeine citrate for extubation of preterm infants: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed. 2004;89(6):F499–503.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Mohammed S, Nour I, Shabaan AE, Shouman B, Abdel-Hady H, Nasef N. High versus low-dose caffeine for apnea of prematurity: a randomized controlled trial. Eur J Pediatr. 2015;174:949–56.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Marcus CL, Meltzer LJ, Roberts RS, Traylor J, Dix J, D’Ilario J, et al. Long-term effects of caffeine therapy for apnea of prematurity on sleep at school age. Am J Respir Crit Care Med. 2014;190(7):791–9.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Suarez-Moran E, Morales-Fuentes GA, Inzunza-Gonzalez JA, Cedillo-Ley I, Gerardo-del Hoyo M, Silva-Ramirez H. Influence of central apnea in the preterm newborn with gastroesophageal reflux disease. Cir Cir. 2011;79(6):511–9.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Slocum C, Hibbs AM, Martin RJ, Orenstein SR. Infant apnea and gastroesophageal reflux: a critical review and framework for further investigation. Curr Gastroenterol Rep. 2007;9(3):219–24.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Davies AM, Koenig JS, Thach BT. Characteristics of upper airway chemoreflex prolonged apnea in human infants. Am Rev Respir Dis. 1989;139(3):668–73.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Omari TI. Apnea-associated reduction in lower esophageal sphincter tone in premature infants. J Pediatr. 2009;154(3):374–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kiatchoosakun P, Dreshaj IA, Abu-Shaweesh JM, Haxhiu MA, Martin RJ. Effects of hypoxia on respiratory neural output and lower esophageal sphincter pressure in piglets. Pediatr Res. 2002;52(1):50–5.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Di Fiore J, Arko M, Herynk B, Martin R, Hibbs AM. Characterization of cardiorespiratory events following gastroesophageal reflux in preterm infants. J Perinatol. 2010;30(10):683–7.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Guillet R, Stoll BJ, Cotten CM, Gantz M, McDonald S, Poole WK, et al. Association of H2-blocker therapy and higher incidence of necrotizing enterocolitis in very low birth weight infants. Pediatrics. 2006;117(2):e137–42.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Orenstein SR, Hassall E, Furmaga-Jablonska W, Atkinson S, Raanan M. Multicenter, double-blind, randomized, placebo-controlled trial assessing the efficacy and safety of proton pump inhibitor lansoprazole in infants with symptoms of gastroesophageal reflux disease. J Pediatr. 2009;154(4):514–20.e4.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Terrin G, Passariello A, De Curtis M, Manguso F, Salvia G, Lega L, et al. Ranitidine is associated with infections, necrotizing enterocolitis, and fatal outcome in newborns. Pediatrics. 2012;129(1):e40–5.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Saiman L, Ludington E, Pfaller M, Rangel-Frausto S, Wiblin RT, Dawson J, et al. Risk factors for candidemia in Neonatal Intensive Care Unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr Infect Dis J. 2000;19(4):319–24.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Canani RB, Cirillo P, Roggero P, Romano C, Malamisura B, Terrin G, et al. Therapy with gastric acidity inhibitors increases the risk of acute gastroenteritis and community-acquired pneumonia in children. Pediatrics. 2006;117(5):e817–20.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Canani RB, Terrin G. Gastric acidity inhibitors and the risk of intestinal infections. Curr Opin Gastroenterol. 2010;26(1):31–5.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kraus JF, Greenland S, Bulterys M. Risk factors for sudden infant death syndrome in the US Collaborative Perinatal Project. Int J Epidemiol. 1989;18(1):113–20.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Moon RY, Horne RS, Hauck FR. Sudden infant death syndrome. Lancet. 2007;370(9598):1578–87.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hakeem GF, Oddy L, Holcroft CA, Abenhaim HA. Incidence and determinants of sudden infant death syndrome: a population-based study on 37 million births. World J Pediatr. 2015;11(1):41–7.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Branch LG, Kesty K, Krebs E, Wright L, Leger S, David LR. Deformational plagiocephaly and craniosynostosis: trends in diagnosis and treatment after the “back to sleep” campaign. J Craniofac Surg. 2015;26(1):147–50.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Turk AE, McCarthy JG, Thorne CH, Wisoff JH. The “back to sleep campaign” and deformational plagiocephaly: is there cause for concern? J Craniofac Surg. 1996;7(1):12–8.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    van Vlimmeren LA, van der Graaf Y, Boere-Boonekamp MM, L’Hoir MP, Helders PJ, Engelbert RH. Risk factors for deformational plagiocephaly at birth and at 7 weeks of age: a prospective cohort study. Pediatrics. 2007;119(2):e408–18.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Filiano JJ, Kinney HC. A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate. 1994;65(3–4):194–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Kelly DH, Walker AM, Cahen L, Shannon DC. Periodic breathing in siblings of sudden infant death syndrome victims. Pediatrics. 1980;66(4):515–20.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Kelly DH, Shannon DC. Periodic breathing in infants with near-miss sudden infant death syndrome. Pediatrics. 1979;63(3):355–60.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington KJ. Apnea is associated with neurodevelopmental impairment in very low birth weight infants. J Perinatol. 2004;24(12):763–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Paavonen EJ, Strang-Karlsson S, Raikkonen K, Heinonen K, Pesonen AK, Hovi P, et al. Very low birth weight increases risk for sleep-disordered breathing in young adulthood: the Helsinki Study of Very Low Birth Weight Adults. Pediatrics. 2007;120(4):778–84.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Rosen CL, Larkin EK, Kirchner HL, Emancipator JL, Bivins SF, Surovec SA, et al. Prevalence and risk factors for sleep-disordered breathing in 8- to 11-year-old children: association with race and prematurity. J Pediatr. 2003;142(4):383–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Hibbs AM, Johnson NL, Rosen CL, Kirchner HL, Martin R, Storfer-Isser A, et al. Prenatal and neonatal risk factors for sleep disordered breathing in school-aged children born preterm. J Pediatr. 2008;153(2):176–82.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Raynes-Greenow CH, Hadfield RM, Cistulli PA, Bowen J, Allen H, Roberts CL. Sleep apnea in early childhood associated with preterm birth but not small for gestational age: a population-based record linkage study. Sleep. 2012;35(11):1475–80.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Wolke D, Sohne B, Riegel K, Ohrt B, Osterlund K. An epidemiologic longitudinal study of sleeping problems and feeding experience of preterm and term children in southern Finland: comparison with a southern German population sample. J Pediatr. 1998;133(2):224–31.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Iglowstein I, Latal Hajnal B, Molinari L, Largo RH, Jenni OG. Sleep behaviour in preterm children from birth to age 10 years: a longitudinal study. Acta Paediatr. 2006;95(12):1691–3.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Strang-Karlsson S, Raikkonen K, Kajantie E, Andersson S, Hovi P, Heinonen K, et al. Sleep quality in young adults with very low birth weight – the Helsinki study of very low birth weight adults. J Pediatr Psychol. 2008;33(4):387–95.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Hibbs AM, Storfer-Isser A, Rosen C, Ievers-Landis CE, Taveras EM, Redline S. Advanced sleep phase in adolescents born preterm. Behav Sleep Med. 2014;12(5):412–24.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sundeep Singh Bola
    • 1
  • Fiona Elize Kritzinger
    • 2
  • Indra Narang
    • 3
    Email author
  1. 1.Department of PaediatricsMarkham Stouffville HospitalMarkhamCanada
  2. 2.Christiaan Barnard Memorial HospitalCape TownSouth Africa
  3. 3.Division of Respiratory MedicineThe Hospital for Sick Children, University of TorontoTorontoCanada

Personalised recommendations