Advertisement

Software Implementation of Pairing Based Cryptography on FPGA

  • Azzouzi Oussama
  • Anane Mohamed
  • Haddam Nassim
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 50)

Abstract

This paper presents the software implementation of Weil, Tate, Ate and Optimal Ate pairings in Jacobean coordinates, over Barreto-Naehrig curve, on Virtex-5 using the MicroBlaze software processor and the ZedBoard Zynq-7000 platform using ARM hardcore processor. The most pairing functions are constructed on the same model, one execution of the Miller’s algorithm plus a final exponentiation, which can be programed with addition chain method. Our flexible system can be performed for any curve parameters.

Keywords

Pairing Weil Tate Ate Optimal Ate Barreto-Naehrig curve Jacobean coordinates Addition chain MicroBlaze ARM 

References

  1. 1.
    Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Advances in Cryptology ASIACRYPT 2001, vol. 2248, pp. 514–532. Springer (2001)Google Scholar
  2. 2.
    Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In: Selected Areas in Cryptography (SAC 2005). Lecture Notes in Computer Science, vol. 3897, pp. 319–331. Springer (2005)Google Scholar
  3. 3.
    Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key management-part 1: General (revised). In: Published as NIST Special Publication 800-57 (2007)Google Scholar
  4. 4.
    Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves. J. Cryptol. 23, 224–280 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Miller, V.: The Weil pairing and its efficient calculation. J. Cryptol. 17, 235–261 (2004). LNCSMathSciNetCrossRefGoogle Scholar
  6. 6.
    Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Mathematics and Its Applications. Chapman & Hall/CRC (2006)Google Scholar
  7. 7.
    Scott, M.: Computing the tate pairing. In: Topics in Cryptology CT-RSA. LNCS, vol. 3376, pp. 293–304 (2005)Google Scholar
  8. 8.
    Matsuda, S., Kanayama, N., Hess, F., Okamoto, E.: Optimised versions of the ate and twisted ate pairings. In: Cryptography and Coding. LNCS, vol. 4887, pp. 302–312 (2007)Google Scholar
  9. 9.
    Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Beuchat, J.L., González-Díaz, J.E., Mitsunari, S., Okamoto, E., Henríquez, F.R., Teruya, T.: High-speed software implementation of the optimal ate pairing over Barreto–Naehrig Curves. In: International Conference on Pairing-Based Cryptography, pp. 21–39. Springer, Heidelberg (2010)Google Scholar
  11. 11.
    Scott, M., Benger, N., Charlemagne, M., Dominguez, P.L.J., Kachisa, E.J.: On the final exponentiation for calculating pairings on ordinary elliptic curves. In: Third International Conference in Pairing-Based Cryptography, USA, pp. 78–88 (2009)Google Scholar
  12. 12.
    Arene, C., Lange, T., Naehrig, M., Ritzenthaler, C.: Faster computation of the tate pairing. In: Cryptology ePrint Archive, Report 2009/155 (2009). http://eprint.iacr.org/2009/155.pdf
  13. 13.
    Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In: Joye, M., Neven, G. (eds.) Identity-Based Cryptography, Amsterdam, The Netherlands. IOS Press (2008)Google Scholar
  14. 14.
    Ghosh, S., Mukhopadhyay, D., Roychowdhury, D.: Secure dual-core cryptoprocessor for pairings over Barreto-Naehrig Curves on FPGA Platform. IEEE Trans. Very Large Scale Integr. Syst. 21(3) (2013)Google Scholar
  15. 15.
    Devegili, A.J., Scott, M., Dahab, R.: Implementing cryptographic pairings over Barreto-Naehrig curves. In: International Conference on Pairing-Based Cryptography. LNCS, vol. 4575, pp. 197–207 (2007)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Azzouzi Oussama
    • 1
    • 2
  • Anane Mohamed
    • 1
  • Haddam Nassim
    • 1
  1. 1.Laboratoire des Méthodes de Conception des SystèmesEcole nationale Supérieur d’Informatique ESIOued-Smar, AlgerAlgérie
  2. 2.Centre de Développement des Technologies AvancéesCDTA Baba HassenAlgerAlgérie

Personalised recommendations