Advertisement

Distributed Constrained Search by Selfish Agents for Efficient Equilibria

  • Vadim Levit
  • Amnon MeiselsEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)

Abstract

Search for stable solutions in games is a hard problem that includes two families of constraints. The global stability constraint and multiple soft constraints that express preferences for socially, or otherwise, preferred solutions. To find stable solutions (e.g., pure Nash equilibria - PNEs) of high efficiency, the multiple agents of the game perform a distributed search on an asymmetric distributed constraints optimization problem (ADCOP). Approximate (local) distributed search on ADCOPs does not necessarily guarantee convergence to an outcome that satisfies the stability constraints, as well as optimizes the soft constraints. The present paper proposes a distributed search algorithm that uses transfer of funds among selfish agents. The final outcome of the algorithm can be stabilized by transfer of funds among the agents, where the transfer function is contracted among the agents during search. It is shown that the proposed algorithm - Iterative Nash Efficiency enhancement Algorithm (INEA) - guarantees improved efficiency for any initial outcome.

The proposed distributed search algorithm can be looked at as an extension to best response dynamics, that uses transfer functions to guarantee convergence and enforce stability in games. The best-response-like nature of INEA establishes its correct behavior for selfish agents in a multi-agents game environment. Most important, unlike best response, the proposed INEA converges to efficient and stable outcomes even in games that are not potential games.

References

  1. 1.
    Osborne, M., Rubinstein, A.: A Course in Game Theory. The MIT Press, London (1994)zbMATHGoogle Scholar
  2. 2.
    DallAsta, L., Pin, P., Ramezanpour, A.: Optimal equilibria of the best shot game. J. Public Econ. Theory 13(6), 885–901 (2011)CrossRefGoogle Scholar
  3. 3.
    Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  4. 4.
    Nguyen, T.-V.-A., Lallouet, A.: A complete solver for constraint games. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 58–74. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10428-7_8CrossRefGoogle Scholar
  5. 5.
    Palmieri, A., Lallouet, A.: Constraint games revisited. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI 2017), Melbourne, AU, pp. 729–735 (2017)Google Scholar
  6. 6.
    Roughgarden, T.: Selfish Routing and the Price of Anarchy. The MIT Press, Cambridge (2005)zbMATHGoogle Scholar
  7. 7.
    Monderer, D., Tennenholtz, M.: Strong mediated equilibrium. Artif. Intell. 173(1), 180–195 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grubshtein, A., Meisels, A.: Finding a nash equilibrium by asynchronous backtracking. In: Milano, M. (ed.) CP 2012. LNCS, pp. 925–940. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33558-7_66CrossRefGoogle Scholar
  9. 9.
    Litov, O., Meisels, A.: Distributed search for pure nash equilibria in graphical games. In: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems (AAMAS-2016), pp. 1279–1280 (2016)Google Scholar
  10. 10.
    Wahbi, M., Brown, K.N.: A distributed asynchronous solver for nash equilibria in hypergraphical games. In: ECAI, pp. 1291–1299 (2016)Google Scholar
  11. 11.
    Grinshpoun, T., Grubshtein, A., Zivan, R., Netzer, A., Meisels, A.: Asymmetric distributed constraint optimization problems. JAIR 47, 613–647 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jackson, M.O., Wilkie, S.: Endogenous games and mechanisms: side payments among players. Rev. Econ. Stud. 72(2), 543–566 (2005)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kearns, M.J.: Graphical games. In: Vazirani, V.V., Nisan, N., Roughgarden, T., Tardos, É. (eds.) Algorithmic Game Theory, pp. 159–178. Cambridge University Press (2007)Google Scholar
  15. 15.
    Jackson, M.O.: Social and Economic Networks, vol. 3. Princeton University Press, Princeton (2008)zbMATHGoogle Scholar
  16. 16.
    Levit, V., Komarovsky, Z., Grinshpoun, T., Meisels, A.: Tradeoffs between incentive mechanisms in Boolean games. IJCA I, 68–74 (2015)Google Scholar
  17. 17.
    Jackson, M.O., Zenou, Y.: Games on networks. In: Young, P., Zamir, S. (eds.) Handbook of Game Theory , vol. 4, pp. 102–191 (2014)Google Scholar
  18. 18.
    Komarovsky, Z., Levit, V., Grinshpoun, T., Meisels, A.: Efficient equilibria in a public goods game. In: WI-IAT, pp. 214–219 (2015)Google Scholar
  19. 19.
    Grubshtein, A., Meisels, A.: A distributed cooperative approach for optimizing a family of network games. In: Brazier, F.M.T., Nieuwenhuis, K., Pavlin, G., Warnier, M., Badica, C. (eds.) IDC 2011. Studies in Computational Intelligence, vol. 382, pp. 49–62. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-24013-3_6CrossRefGoogle Scholar
  20. 20.
    Grubshtein, A., Zivan, R., Grinshpoun, T., Meisels, A.: Local search for distributed asymmetric optimization. In: AAMAS, pp. 1015–1022 (2010)Google Scholar
  21. 21.
    Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. Artif. Intell. 212, 1–26 (2014)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization. Auton. Agents Multi Agent Syst. 31, 1165–1207 (2017)CrossRefGoogle Scholar
  23. 23.
    Shapley, L.: A value for n-person games. In: kunh, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games. Annals of Mathematical Studies, vol. 28, pp. 307–317 (1953)Google Scholar
  24. 24.
    Hirshleifer, J.: From weakest-link to best-shot: the voluntary provision of public goods. Public Choice 41(3), 371–386 (1983)CrossRefGoogle Scholar
  25. 25.
    Nisan, N., Schapira, M., Valiant, G., Zohar, A.: Best-response mechanisms. In: Innovations in Computer Science - ICS, Beijing, China, pp. 155–165 (2011)Google Scholar
  26. 26.
    Nisan, N., Schapira, M., Valiant, G., Zohar, A.: When is it best to best-respond? SIGecom Exch. 10, 16–18 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceBen-Gurion UniversityBeershebaIsrael

Personalised recommendations