Advertisement

Balancing Asymmetry in Max-sum Using Split Constraint Factor Graphs

  • Liel Cohen
  • Roie ZivanEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)

Abstract

Max-sum is a version of Belief Propagation, used for solving DCOPs. On tree-structured problems, Max-sum converges to the optimal solution in linear time. When the constraint graph representing the problem includes multiple cycles, Max-sum might not converge and explore low quality solutions. Damping is a method that increases the chances that Max-sum will converge. Damped Max-sum (DMS) was recently found to produce high quality solutions for DCOP when combined with an anytime framework.

We propose a novel method for adjusting the level of asymmetry in the factor graph, in order to achieve a balance between exploitation and exploration, when using Max-sum for solving DCOPs. By converting a standard factor graph to an equivalent split constraint factor graph (SCFG), in which each function-node is split to two function-nodes, we can control the level of asymmetry for each constraint. Our empirical results demonstrate that by applying DMS to SCFGs with a minor level of asymmetry we can find high quality solutions in a small number of iterations, even without using an anytime framework. As part of our investigation of this success, we prove that for a factor-graph with a single constraint, if this constraint is split symmetrically, Max-sum applied to the resulting cycle is guaranteed to converge to the optimal solution and demonstrate that for an asymmetric split, convergence is not guaranteed.

References

  1. 1.
    Chli, M., Winsper, M.: Using the max-sum algorithm for supply chain emergence in dynamic multiunit environments. IEEE Trans. Syst. Man Cybern. 45(3), 422–435 (2015)CrossRefGoogle Scholar
  2. 2.
    Cohen, L., Zivan, R.: Max-sum revisited: the real power of damping. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10643, pp. 111–124. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71679-4_8CrossRefGoogle Scholar
  3. 3.
    Farinelli, A., Rogers, A., Petcu, A., Jennings, N.: Decentralised coordination of low-power embedded devices using the max-sum algorithm. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems, vol. 2, pp. 639–646. International Foundation for Autonomous Agents and Multiagent Systems (2008)Google Scholar
  4. 4.
    Farinelli, A., Rogers, A., Petcu, A., Jennings, N.R.: Decentralized coordination of low-power embedded devices using the max-sum algorithm. In: AAMAS, pp. 639–646 (2008)Google Scholar
  5. 5.
    Farinelli, A., Rogers, A., Jennings, N.R.: Agent-based decentralised coordination for sensor networks using the max-sum algorithm. Auton. Agents Multi-Agent Syst. 28(3), 337–380 (2014)CrossRefGoogle Scholar
  6. 6.
    Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward bounding. J. Artif. Intell. Res. 34, 25–46 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 181–208 (2001)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lazic, N., Frey, B., Aarabi, P.: Solving the uncapacitated facility location problem using message passing algorithms. In: International Conference on Artificial Intelligence and Statistics, pp. 429–436 (2010)Google Scholar
  9. 9.
    Macarthur, K.S., Stranders, R., Ramchurn, S.D., Jennings, N.R.: A distributed anytime algorithm for dynamic task allocation in multi-agent systems. In: AAAI (2011)Google Scholar
  10. 10.
    Modi, P.J., Shen, W., Tambe, M., Yokoo, M.: Adopt: asynchronous distributed constraints optimizationwith quality guarantees. Artif. Intell. 161(1–2), 149–180 (2005)CrossRefGoogle Scholar
  11. 11.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)zbMATHGoogle Scholar
  12. 12.
    Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: IJCAI, pp. 266–271 (2005)Google Scholar
  13. 13.
    Petcu, A., Faltings, B.: Approximations in distributed optimization. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 802–806. Springer, Heidelberg (2005).  https://doi.org/10.1007/11564751_68CrossRefGoogle Scholar
  14. 14.
    Pretti, M.: A message-passing algorithm with damping. J. Stat. Mech. Theory Exp. 11, P11008 (2005)CrossRefGoogle Scholar
  15. 15.
    Pujol-Gonzalez, M., Cerquides, J., Meseguer, P., Rodríguez-Aguilar, J.A., Tambe, M.: Engineering the decentralized coordination of UAVs with limited communication range. In: Bielza, C., et al. (eds.) CAEPIA 2013. LNCS (LNAI), vol. 8109, pp. 199–208. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40643-0_21CrossRefGoogle Scholar
  16. 16.
    Ramchurn, S.D., Farinelli, A., Macarthur, K.S., Jennings, N.R.: Decentralized coordination in robocup rescue. Comput. J. 53(9), 1447–1461 (2010)CrossRefGoogle Scholar
  17. 17.
    Rogers, A., Farinelli, A., Stranders, R., Jennings, N.R.: Bounded approximate decentralized coordination via the max-sum algorithm. Artif. Intell. 175(2), 730–759 (2011)CrossRefGoogle Scholar
  18. 18.
    Ruozzi, N., Tatikonda, S.: Message-passing algorithms: reparameterizations and splittings. IEEE Trans. Inf. Theory 59(9), 5860–5881 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Som, P., Chockalingam, A.: Damped belief propagation based near-optimal equalization of severely delay-spread UWB MIMO-ISI channels. In: 2010 IEEE International Conference on Communications (ICC), pp. 1–5. IEEE (2010)Google Scholar
  20. 20.
    Stranders, R., Farinelli, A., Rogers, A., Jennings, N.R.: Decentralised coordination of mobile sensors using the max-sum algorithm. In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, 11–17 July 2009, pp. 299–304 (2009)Google Scholar
  21. 21.
    Tarlow, D., Givoni, I., Zemel, R., Frey, B.: Graph cuts is a max-product algorithm. In: Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (2011)Google Scholar
  22. 22.
    Tarlow, D., Givoni, I., Zemel, R.: Hop-map: efficient message passing with high order potentials. In: AISTATS, vol. 9, pp. 812–819 (2010)Google Scholar
  23. 23.
    Teacy, W.T.L., Farinelli, A., Grabham, N.J., Padhy, P., Rogers, A., Jennings, N.R.: Max-sum decentralized coordination for sensor systems. In: AAMAS, pp. 1697–1698 (2008)Google Scholar
  24. 24.
    Weiss, Y.: Correctness of local probability propagation in graphical models with loops. Neural Comput. 12(1), 1–41 (2000)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yanover, C., Meltzer, T., Weiss, Y.: Linear programming relaxations and belief propagation - an empirical study. J. Mach. Learn. Res. 7, 1887–1907 (2006)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Yedidsion, H., Zivan, R., Farinelli, A.: Explorative max-sum for teams of mobile sensing agents. In: International Conference on Autonomous Agents and Multi-Agent Systems, AAMAS 2014, Paris, France, 5–9 May 2014, pp. 549–556 (2014)Google Scholar
  27. 27.
    Yeoh, W., Felner, A., Koenig, S.: Bnb-ADOPT: an asynchronous branch-and-bound DCOP algorithm. Artif. Intell. Res. (JAIR) 38, 85–133 (2010)CrossRefGoogle Scholar
  28. 28.
    Zhang, W., Xing, Z., Wang, G., Wittenburg, L.: Distributed stochastic search and distributed breakout: properties, comparison and applications to constraints optimization problems in sensor networks. Artif. Intell. 161(1–2), 55–88 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Zivan, R., Okamoto, S., Peled, H.: Explorative anytime local search for distributed constraint optimization. Artif. Intell. 211, 1–21 (2014)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zivan, R., Parash, T., Cohen, L., Peled, H., Okamoto, S.: Balancing exploration and exploitation in incomplete min/max-sum inference for distributed constraint optimization. Auton. Agents Multi-Agent Syst. 31(5), 1165–1207 (2017)CrossRefGoogle Scholar
  31. 31.
    Zivan, R., Parash, T., Naveh, Y.: Applying max-sum to asymmetric distributed constraint optimization. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 432–439 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Ben Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations