Advertisement

Extending the Capacity of 1 / f Noise Generation

  • Guillaume Perez
  • Brendan Rappazzo
  • Carla Gomes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)

Abstract

From the emissions of massive quasars scattered across the universe, to the fluctuations in the stock market and the melodies of music, several real world signals have a power spectral density (PSD) that follows an inverse relationship with their frequency. Specifically, this type of random process is referred to as a \(1/f\) signal, and has been of much interest in research, as sequences that have this property better mimic natural signals. In the context of constraint programming, a recent work has defined a constraint that enforces sequences to exhibit a \(1/f\) PSD, as well as a corresponding constraint propagator. In this paper we show that the set of valid solutions associated with this propagator misses an exponential number of \(1/f\) solutions and accepts solutions that do not have a \(1/f\) PSD. Additionally, we address these two issues by proposing two non-exclusive algorithms for this constraint. The first one can find a larger set of valid solutions, while the second prevents most non-\(1/f\) solutions. We demonstrate in our experimental section that using the hybrid of these two methods results in a more robust propagator for this constraint.

References

  1. 1.
    Herriman, A., McCartney, J., Burk, P., Downey, A., Whittle, R., Kellet, P.: Generation of pink (1/f) noise. http://www.firstpr.com.au/dsp/pink-noise/
  2. 2.
    Arafailova, E., et al.: Global constraint catalog, vol. II, time-series constraints. arXiv preprint arXiv:1609.08925 (2016)
  3. 3.
    Chemillier, M., Truchet, C.: Computation of words satisfying the rhythmic oddity property (after simha arom’s works). Inf. Process. Lett. 86(5), 255–261 (2003)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Gardner, M.: White and brown music, fractal curves and one-over-f fluctuations. Sci. Am. 238(4), 16–32 (1978)CrossRefGoogle Scholar
  5. 5.
    Hennig, H., et al.: The nature and perception of fluctuations in human musical rhythms. PLoS ONE 6(10), e26457 (2011)CrossRefGoogle Scholar
  6. 6.
    Kasdin, N.J.: Discrete simulation of colored noise and stochastic processes and 1/f/sup/spl alpha//power law noise generation. Proc. IEEE 83(5), 802–827 (1995)CrossRefGoogle Scholar
  7. 7.
    Keshner, M.S.: 1/f noise. Proc. IEEE 70(3), 212–218 (1982)CrossRefGoogle Scholar
  8. 8.
    Morin, M., Quimper, C.-G.: The markov transition constraint. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 405–421. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07046-9_29CrossRefzbMATHGoogle Scholar
  9. 9.
    Pachet, F., Roy, P., Papadopoulos, A., Sakellariou, J.: Generating 1/f noise sequences as constraint satisfaction: the voss constraint. In: IJCAI, pp. 2482–2488 (2015)Google Scholar
  10. 10.
    Papadopoulos, A., Pachet, F., Roy, P., Sakellariou, J.: Exact sampling for regular and markov constraints with belief propagation. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 341–350. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23219-5_24CrossRefGoogle Scholar
  11. 11.
    Perez, G., Régin, J.-C.: Efficient operations on MDDs for building constraint programming models. In: IJCAI, pp. 374–380 (2015)Google Scholar
  12. 12.
    Perez, G., Régin, J.-C.: MDDs are efficient modeling tools: an application to some statistical constraints. In: Salvagnin, D., Lombardi, M. (eds.) CPAIOR 2017. LNCS, vol. 10335, pp. 30–40. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59776-8_3CrossRefGoogle Scholar
  13. 13.
    Perez, G., Régin, J.-C.: MDDs: sampling and probability constraints. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 226–242. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-66158-2_15CrossRefGoogle Scholar
  14. 14.
    Perlin, K.: An image synthesizer. ACM Siggraph Comput. Graph. 19(3), 287–296 (1985)CrossRefGoogle Scholar
  15. 15.
    Perron, L.: Or-tools. In: Workshop CP Solvers: Modeling, Applications, Integration, and Standardization (2013)Google Scholar
  16. 16.
    Pesant, G.: Achieving domain consistency and counting solutions for dispersion constraints. INFORMS J. Comput. 27(4), 690–703 (2015)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Rossi, R., Prestwich, S., Tarim, S.A.: Statistical constraints. arXiv preprint arXiv:1402.5161 (2014)
  18. 18.
    Roy, P., Pachet, F.: Enforcing meter in finite-length markov sequences. In: AAAI (2013)Google Scholar
  19. 19.
    Schaus, P., Deville, Y., Dupont, P., Régin, J.-C.: The deviation constraint. In: Van Hentenryck, P., Wolsey, L. (eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 260–274. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72397-4_19CrossRefzbMATHGoogle Scholar
  20. 20.
    Schaus, P., Régin, J.-C.: Bound-consistent spread constraint. EURO J. Comput. Optim. (2013)Google Scholar
  21. 21.
    Truchet, C., Assayag, G.: Constraint Programming in Music. ISTE-Wiley, Hoboken (2011)Google Scholar
  22. 22.
    Truchet, C., Codognet, P.: Musical constraint satisfaction problems solved with adaptive search. Soft. Comput. 8(9), 633–640 (2004)CrossRefGoogle Scholar
  23. 23.
    Voss, R.F., Clarke, J.: 1/f noise in music and speech. Nature 258(5533), 317–318 (1975)CrossRefGoogle Scholar
  24. 24.
    Voss, R.F., Clarke, J.: 1/f noisein music: Music from 1/f noise. J. Acous. Soc. Am. 63(1), 258–263 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Guillaume Perez
    • 1
  • Brendan Rappazzo
    • 1
  • Carla Gomes
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations