Advertisement

Finding Solutions by Finding Inconsistencies

  • Ghiles ZiatEmail author
  • Marie Pelleau
  • Charlotte Truchet
  • Antoine Miné
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)

Abstract

In continuous constraint programming, the solving process alternates propagation steps, which reduce the search space according to the constraints, and branching steps. In practice, the solvers spend a lot of computation time in propagation to separate feasible and infeasible parts of the search space. The constraint propagators cut the search space into two subspaces: the inconsistent one, which can be discarded, and the consistent one, which may contain solutions and where the search continues. The status of all this consistent subspace is thus indeterminate. In this article, we introduce a new step called elimination. It refines the analysis of the consistent subspace by dividing it into an indeterminate one, where the search must continue, and a satisfied one, where the constraints are always satisfied. The latter can be stored and removed from the search process. Elimination relies on the propagation of the negation of the constraints, and a new difference operator to efficiently compute the obtained set as an union of boxes, thus it uses the same representations and algorithms as those already existing in the solvers. Combined with propagation, elimination allows the solver to focus on the frontiers of the constraints, which is the core difficult part of the problem. We have implemented our method in the AbSolute solver, and present experimental results on classic benchmarks with good performances.

References

  1. 1.
    Batnini, H., Michel, C., Rueher, M.: Mind the gaps: a new splitting strategy for consistency techniques. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 77–91. Springer, Heidelberg (2005).  https://doi.org/10.1007/11564751_9CrossRefGoogle Scholar
  2. 2.
    Benhamou, F.: Heterogeneous constraint solvings. In: Proceedings of the 5th International Conference on Algebraic and Logic Programming, pp. 62–76 (1996)CrossRefGoogle Scholar
  3. 3.
    Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revisiting hull and box consistency. In: Proceedings of the 16th International Conference on Logic Programming, pp. 230–244 (1999)Google Scholar
  4. 4.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence, (ECAI 2004), pp. 146–150. IOS Press (2004)Google Scholar
  5. 5.
    Bussieck, M.R., Drud, A.S., Meeraus, A.: Minlplib - a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput. 15(1), 114–119 (2003)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Collavizza, H., Delobel, F., Rueher, M.: Extending consistent domains of numeric CSP. In: Proceedings of the 16th International Joint Conference on Artificial Intelligence, pp. 406–413 (1999)Google Scholar
  8. 8.
    Hansen, E.: Global optimization using interval analysis. Marcel Dekker, New York (1992)zbMATHGoogle Scholar
  9. 9.
    Haralick, R.M., G.L. Elliott. Increasing tree search efficiency for constraint satisfaction problems. In: Proceedings of the 6th International Joint Conference on Artificial intelligence (IJCAI 1979), pp. 356–364. Morgan Kaufmann Publishers Inc. (1979)Google Scholar
  10. 10.
    Jaulin, L., Walter, E.: Set inversion via interval analysis for nonlinear bounded-error estimation. Automatica 29(4), 1053–1064 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)Google Scholar
  12. 12.
    Pelleau, M., Miné, A., Truchet, C., Benhamou, F.: A Constraint Solver Based on Abstract Domains. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 434–454. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-35873-9_26CrossRefzbMATHGoogle Scholar
  13. 13.
    Ratz, D.: Box-splitting strategies for the interval Gauss-Seidel step in a global optimization method. Computing 53, 337–354 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming. Elsevier Science Inc., New York (2006)zbMATHGoogle Scholar
  15. 15.
    Schulte, C., Stuckey, P.J.: Efficient constraint propagation engines. Trans. Program. Lang. Syst. 31(1), 1–43 (2008)CrossRefGoogle Scholar
  16. 16.
    Shcherbina, O., Neumaier, A., Sam-Haroud, D., Vu, X.-H., Nguyen, T.-V.: Benchmarking global optimization and constraint satisfaction codes. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) COCOS 2002. LNCS, vol. 2861, pp. 211–222. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39901-8_16CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Ghiles Ziat
    • 1
    Email author
  • Marie Pelleau
    • 2
  • Charlotte Truchet
    • 3
  • Antoine Miné
    • 1
  1. 1.Sorbonne UniversitéParisFrance
  2. 2.Université Côte d’Azur, CNRS, I3SNiceFrance
  3. 3.TASC LS2N UMR 6004, Univ.NantesFrance

Personalised recommendations