Advertisement

PW-CT: Extending Compact-Table to Enforce Pairwise Consistency on Table Constraints

  • Anthony SchneiderEmail author
  • Berthe Y. ChoueiryEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)

Abstract

The Compact-Table (CT) algorithm is the current state-of-the-art algorithm for enforcing Generalized Arc Consistency (GAC) on table constraints during search. Recently, algorithms for enforcing Pairwise Consistency (PWC), which is strictly stronger than GAC, were shown to be advantageous for solving difficult problems. However, PWC algorithms can be costly in terms of CPU time and memory consumption. As a result, their overhead may offset the savings of search-space reduction. In this paper, we introduce PW-CT, an algorithm that modifies CT to enforce full PWC. We show that PW-CT avoids the high memory requirements of prior PWC algorithms and significantly reduces the time required to enforce PWC.

References

  1. 1.
    Balafrej, A., Bessière, C., Paparrizou, A.: Multi-armed bandits for adaptive constraint propagation. In: Proceedings of IJCAI 2015, pp. 290–296 (2015)Google Scholar
  2. 2.
    Bessière, C., Régin, J.-C.: MAC and combined heuristics: two reasons to forsake FC (and CBJ?) on hard problems. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 61–75. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-61551-2_66CrossRefGoogle Scholar
  3. 3.
    Bessière, C., Stergiou, K., Walsh, T.: Domain filtering consistencies for non-binary constraints. Artif. Intell. 172, 800–822 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: Proceedings of ECAI 2004, pp. 146–150 (2004)Google Scholar
  5. 5.
    Briggs, P., Torczon, L.: An efficient representation for sparse sets. ACM Lett. Program. Lang. Syst. 2(1–4), 59–69 (1993)CrossRefGoogle Scholar
  6. 6.
    le Clément, V., Schaus, P., Solnon, C., Lecoutre, C.: Sparse-sets for domain implementation. In: Proceedings of the CP Workshop on TRICS 2013 (2013)Google Scholar
  7. 7.
    Dechter, R.: Constraint Processing. Morgan Kaufmann, Burlington (2003)zbMATHGoogle Scholar
  8. 8.
    Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.-C., Schaus, P.: Compact-table: efficiently filtering table constraints with reversible sparse bit-sets. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 207–223. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44953-1_14CrossRefGoogle Scholar
  9. 9.
    Gyssens, M.: On the complexity of join dependencies. ACM Trans. Database Syst. 11(1), 81–108 (1986)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hentenryck, P.V., Deville, Y., Teng, C.M.: A generic arc consistency algorithm and its specializations. Artif. Intell. 57, 291–321 (1992)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Janssen, P., Jégou, P., Nougier, B., Vilarem, M.: A filtering process for general constraint-satisfaction problems: achieving pairwise-consistency using an associated binary representation. In: IEEE Workshop on Tools for AI, pp. 420–427 (1989)Google Scholar
  12. 12.
    Karakashian, S., Woodward, R., Choueiry, B.Y.: Improving the performance of consistency algorithms by localizing and bolstering propagation in a tree decomposition. In: Proceedings of AAAI 2013, pp. 466–473 (2013)Google Scholar
  13. 13.
    Karakashian, S., Woodward, R., Reeson, C., Choueiry, B.Y., Bessiere, C.: A first practical algorithm for high levels of relational consistency. In: Proceedings of AAAI 2010, pp. 101–107 (2010)Google Scholar
  14. 14.
    Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Constraints 16(4), 341–371 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Lecoutre, C., Paparrizou, A., Stergiou, K.: Extending STR to a higher-order consistency. In: Proceedings of AAAI 2013, pp. 576–582 (2013)Google Scholar
  16. 16.
    Likitvivatanavong, C., Xia, W., Yap, R.H.C.: Higher-order consistencies through GAC on factor variables. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 497–513. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10428-7_37CrossRefGoogle Scholar
  17. 17.
    Likitvivatanavong, C., Xia, W., Yap, R.: Decomposition of the factor encoding for CSPs. In: Proceedings of IJCAI 2015, pp. 353–359 (2015)Google Scholar
  18. 18.
    Mackworth, A.K.: Consistency in networks of relations. Artif. Intell. 8, 99–118 (1977)CrossRefGoogle Scholar
  19. 19.
    Mairy, J.-B., Deville, Y., Lecoutre, C.: Domain k-wise consistency made as simple as generalized arc consistency. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 235–250. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07046-9_17CrossRefGoogle Scholar
  20. 20.
    Paparrizou, A., Stergiou, K.: Strong local consistency algorithms for table constraints. Constraints 21(2), 163–197 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Paparrizou, A., Stergiou, K.: On neighborhood singleton consistencies. In: Proceedings of IJCAI 2017, pp. 736–742 (2017)Google Scholar
  22. 22.
    Perez, G., Régin, J.-C.: Improving GAC-4 for table and MDD constraints. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 606–621. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10428-7_44CrossRefGoogle Scholar
  23. 23.
    Samaras, N., Stergiou, K.: Binary encodings of non-binary constraint satisfaction problems: algorithms and experimental results. In: JAIR vol. 24, pp. 641–684 (2005)Google Scholar
  24. 24.
    Schneider, A., Woodward, R.J., Choueiry, B.Y., Bessiere, C.: Improving relational consistency algorithms using dynamic relation partitioning. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 688–704. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10428-7_50CrossRefGoogle Scholar
  25. 25.
    Ullmann, J.R.: Partition search for non-binary constraint satisfaction. Inf. Sci. 177(18), 3639–3678 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Waltz, D.: Understanding line drawings of scenes with shadows. In: Winston, P. (ed.) The Psychology of Computer Vision, pp. 19–91. McGraw-Hill Inc., New York City (1975)Google Scholar
  27. 27.
    Wang, R., Xia, W., Yap, R.H.C., Li, Z.: Optimizing simple tabular reduction with a bitwise representation. In: Proceedings of IJCAI 2016, pp. 787–793 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Constraint Systems LaboratoryUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations