Objective as a Feature for Robust Search Strategies
- 2 Citations
- 1k Downloads
Abstract
In constraint programming the search strategy entirely guides the solving process, and drastically affects the running time for solving particular problem instances. Many features have been defined so far for the design of efficient and robust search strategies, such as variables’ domains, constraint graph, or even the constraints triggering fails. In this paper, we propose to use the objective functions of constraint optimization problems as a feature to guide search strategies. We define an objective-based function, to monitor the objective bounds modifications and to extract information. This function is the main feature to design a new variable selection heuristic, whose results validate human intuitions about the objective modifications. Finally, we introduce a simple but efficient combination of features, to incorporate the objective in the state-of-the-art search strategies. We illustrate this new method by testing it on several classic optimization problems, showing that the new feature often yields to a better running time and finds better solutions in the given time.
References
- 1.Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search by weighting constraints. In: ECAI, vol. 16, p. 146 (2004)Google Scholar
- 2.Chu, G., Stuckey, P.J.: Learning value heuristics for constraint programming. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 108–123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_8CrossRefGoogle Scholar
- 3.Fages, J.-G., Prud’Homme, C.: Making the first solution good! In: ICTAI 2017 29th IEEE International Conference on Tools with Artificial Intelligence (2017)Google Scholar
- 4.Gauthier, J.-M., Ribière, G.: Experiments in mixed-integer linear programming using pseudo-costs. Math. Program. 12(1), 26–47 (1977)MathSciNetCrossRefGoogle Scholar
- 5.Gay, S., Hartert, R., Lecoutre, C., Schaus, P.: Conflict ordering search for scheduling problems. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 140–148. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23219-5_10CrossRefGoogle Scholar
- 6.Gent, I.P., Walsh, T.: CSPlib: a benchmark library for constraints. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 480–481. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48085-3_36CrossRefGoogle Scholar
- 7.Haralick, R.M., Elliott, G.L.: Increasing tree search efficiency for constraint satisfaction problems. Artif. Intell. 14(3), 263–313 (1980)CrossRefGoogle Scholar
- 8.Heras, F., Larrosa, J.: New inference rules for efficient max-sat solving. In: AAAI, pp. 68–73 (2006)Google Scholar
- 9.Hutter, F., Hoos, H., Leyton-Brown, K.: An evaluation of sequential model-based optimization for expensive blackbox functions. In: Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1209–1216. ACM (2013)Google Scholar
- 10.Larrosa, J., Schiex, T.: Solving weighted CSP by maintaining arc consistency. Artif. Intell. 159(1–2), 1–26 (2004)MathSciNetCrossRefGoogle Scholar
- 11.Lecoutre, C., Saïs, L., Tabary, S., Vidal, V.: Reasoning from last conflict(s) in constraint programming. Artif. Intell. 173(18), 1592–1614 (2009)MathSciNetCrossRefGoogle Scholar
- 12.Levasseur, N., Boizumault, P., Loudni, S.: A value ordering heuristic for weighted CSP. In: 19th IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2007, vol. 1, pp. 259–262. IEEE (2007)Google Scholar
- 13.Lombardi, M., Schaus, P.: Cost impact guided LNS. In: Simonis, H. (ed.) CPAIOR 2014. LNCS, vol. 8451, pp. 293–300. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07046-9_21CrossRefGoogle Scholar
- 14.Michel, L., Van Hentenryck, P.: Activity-based search for black-box constraint programming solvers. In: Beldiceanu, N., Jussien, N., Pinson, É. (eds.) CPAIOR 2012. LNCS, vol. 7298, pp. 228–243. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29828-8_15CrossRefGoogle Scholar
- 15.Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74970-7_38CrossRefGoogle Scholar
- 16.Palmieri, A., Régin, J.-C., Schaus, P.: Parallel strategies selection. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 388–404. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_25CrossRefGoogle Scholar
- 17.Pesant, G.: Counting-based search for constraint optimization problems. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, Arizona, 12–17 February 2016, USA, pp. 3441–3448 (2016)Google Scholar
- 18.Pesant, G., Quimper, C.-G., Zanarini, A.: Counting-based search: branching heuristics for constraint satisfaction problems. J. Artif. Intell. Res. (JAIR) 43, 173–210 (2012)MathSciNetCrossRefGoogle Scholar
- 19.Prud’homme, C., Fages, J.-G., Lorca, X.: Choco Documentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S (2016)Google Scholar
- 20.Refalo, P.: Impact-based search strategies for constraint programming. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 557–571. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30201-8_41CrossRefzbMATHGoogle Scholar
- 21.Régin, J.-C.: A Filtering algorithm for constraints of difference in CSPS. In: AAAI, vol. 94, pp. 362–367 (1994)Google Scholar
- 22.Schaus, P., Van Hentenryck, P., Régin, J.-C.: Scalable load balancing in nurse to patient assignment problems. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009. LNCS, vol. 5547, pp. 248–262. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01929-6_19CrossRefGoogle Scholar
- 23.Simonis, H., O’Sullivan, B.: Search strategies for rectangle packing. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 52–66. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85958-1_4CrossRefGoogle Scholar
- 24.Smith, B.M., Grant, S.A.: Trying harder to fail first. Research Report Series-University of Leeds School of Computer Studies LU SCS RR (1997)Google Scholar
- 25.Vilím, P., Laborie, P., Shaw, P.: Failure-directed search for constraint-based scheduling. In: Michel, L. (ed.) CPAIOR 2015. LNCS, vol. 9075, pp. 437–453. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18008-3_30CrossRefzbMATHGoogle Scholar
- 26.Wallace, M.: Practical applications of constraint programming. Constraints 1(1–2), 139–168 (1996)MathSciNetCrossRefGoogle Scholar
- 27.Xia, W., Yap, RH.C.: Learning robust search strategies using a bandit-based approach. In: AAAI Conference on Artificial Intelligence (2018)Google Scholar
- 28.Zitoun, H., Michel, C., Rueher, M., Michel, L.: Search strategies for floating point constraint systems. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 707–722. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_45CrossRefGoogle Scholar