Advertisement

Augmenting Stream Constraint Programming with Eventuality Conditions

  • Jasper C. H. Lee
  • Jimmy H. M. LeeEmail author
  • Allen Z. Zhong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)

Abstract

Stream constraint programming is a recent addition to the family of constraint programming frameworks, where variable domains are sets of infinite streams over finite alphabets. Previous works showed promising results for its applicability to real-world planning and control problems. In this paper, motivated by the modelling of planning applications, we improve the expressiveness of the framework by introducing (1) the “until” constraint, a new construct that is adapted from Linear Temporal Logic and (2) the @ operator on streams, a syntactic sugar for which we provide a more efficient solving algorithm over simple desugaring. For both constructs, we propose corresponding novel solving algorithms and prove their correctness. We present competitive experimental results on the Missionaries and Cannibals logic puzzle and a standard path planning application on the grid, by comparing with Apt and Brand’s method for verifying eventuality conditions using a CP approach.

References

  1. 1.
    Apt, K.R., Brand, S.: Infinite qualitative simulations by means of constraint programming. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 29–43. Springer, Heidelberg (2006).  https://doi.org/10.1007/11889205_5CrossRefGoogle Scholar
  2. 2.
    van Beek, P., Chen, X.: CPlan: a constraint programming approach to planning. In: Proceedings of AAAI 1999/IAAI 1999, pp. 585–590 (1999)Google Scholar
  3. 3.
    Büchi, J.R.: On a decision method in restricted second order arithmetic. In: Mac Lane, S., Siefkes, D. (eds.) The Collected Works of J. Richard Büchi, pp. 425–435. Springer, New York (1990).  https://doi.org/10.1007/978-1-4613-8928-6_23CrossRefzbMATHGoogle Scholar
  4. 4.
    Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco (2003)zbMATHGoogle Scholar
  5. 5.
    Emerson, E.A.: Temporal and modal logic. In: Handbook of Theoretical Computer Science (vol. B), pp. 995–1072. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  6. 6.
    Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory & Practice. Morgan Kaufmann Publishers Inc., San Francisco (2004)zbMATHGoogle Scholar
  7. 7.
    Golden, K., Pang, W.: Constraint reasoning over strings. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 377–391. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45193-8_26CrossRefzbMATHGoogle Scholar
  8. 8.
    Harabor, D., Grastien, A.: Online graph pruning for pathfinding on grid maps. In: Proceedings of AAAI 2011, pp. 1114–1119 (2011)Google Scholar
  9. 9.
    Kautz, H., Selman, B.: Planning as satisfiability. In: Proceedings of ECAI 1992, pp. 359–363 (1992)Google Scholar
  10. 10.
    Kilby, P., Prosser, P., Shaw, P.: A comparison of traditional and constraint-based heuristic methods on vehicle routing problems with side constraints. Constraints 5(4), 389–414 (2000)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lallouet, A., Law, Y.C., Lee, J.H.M., Siu, C.F.K.: Constraint programming on infinite data streams. In: Proceedings of IJCAI 2011, pp. 597–604 (2011)Google Scholar
  12. 12.
    Lee, J.C.H., Lee, J.H.M.: Towards practical infinite stream constraint programming: applications and implementation. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 449–464. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10428-7_34CrossRefGoogle Scholar
  13. 13.
    Pesant, G., Gendreau, M., Potvin, J.Y., Rousseau, J.M.: An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transp. Sci. 32(1), 12–29 (1998)CrossRefGoogle Scholar
  14. 14.
    Pnueli, A.: The temporal logic of programs. In: Proceedings of FOCS 1977, pp. 46–57 (1977)Google Scholar
  15. 15.
    Sturtevant, N.R.: Benchmarks for grid-based pathfinding. IEEE Trans. Comput. Intell. AI Games 4(2), 144–148 (2012)CrossRefGoogle Scholar
  16. 16.
    Wadge, W.W., Ashcroft, E.A.: LUCID, the Dataflow Programming Language. Academic Press Professional Inc., San Diego (1985)zbMATHGoogle Scholar
  17. 17.
    Winskel, G.: The Formal Semantics of Programming Languages: An Introduction. MIT Press, Cambridge (1993)zbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Jasper C. H. Lee
    • 1
  • Jimmy H. M. Lee
    • 2
    Email author
  • Allen Z. Zhong
    • 2
  1. 1.Department of Computer ScienceBrown UniversityProvidenceUSA
  2. 2.Department of Computer Science and EngineeringThe Chinese University of Hong KongShatin, N.T.Hong Kong

Personalised recommendations