Advertisement

A Novel Graph-Based Heuristic Approach for Solving Sport Scheduling Problem

  • Meriem KhelifaEmail author
  • Dalila BoughaciEmail author
  • Esma Aïmeur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)

Abstract

This paper proposes an original and effective heuristic approach for solving the unconstrained traveling tournament problem (denoted by UTTP) in sport scheduling. UTTP is an interesting variant of the well-known NP-hard traveling tournament problem (TTP) where the main objective is to find a tournament schedule that minimizes the total distances traveled by the teams. The proposed graph-based heuristic method starts with a set of n teams \((n< 10)\). The method models the problem by representing the home locations of the teams as vertices and each arc corresponds to the matching between two teams. Each round corresponds to a 1-factor of the generated graph. We use the Bron-Kerbosch clique detection algorithm to enumerate all the possible \(2(n-1)\) cliques from the 1-factors. Then, the vertices of each \(2(n-1)\) cliques are sorted to create double round robin tournament (DRRT) schedules. The schedule with lowest cost travel is selected to be the solution of the problem. The proposed method is evaluated on several instances and compared with the state-of-the-art. The numerical results are promising and show the benefits of our method. The proposed method significantly improves the current best solutions for the US National Baseball League (NL) instances and produces new good solutions for the Rugby League (SUPER) instances.

Keywords

Sport scheduling Traveling tournament problem Heuristic Perfect matching Graph Unconstrained traveling tournament problem 

References

  1. 1.
    Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to the traveling tournament problem. J. Sched. 9(2), 177–193 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: a survey. Oper. Res. 16(3), 538–558 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bhattacharyya, R.: Complexity of the unconstrained traveling tournament problem. Oper. Res. Lett. 44(5), 649–654 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Biajoli, F.L., Lorena, L.A.N.: Clustering search approach for the traveling tournament problem. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 83–93. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76631-5_9CrossRefGoogle Scholar
  5. 5.
    Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16(9), 575–577 (1973)zbMATHCrossRefGoogle Scholar
  6. 6.
    de Carvalho, M.A.M., Lorena, L.A.N.: New models for the mirrored traveling tournament problem. Comput. Ind. Eng. 63(4), 1089–1095 (2012)CrossRefGoogle Scholar
  7. 7.
    De Werra, D.: Scheduling in sports. Stud. Graphs Discrete Program. 11, 381–395 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem description and benchmarks. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 580–584. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45578-7_43zbMATHCrossRefGoogle Scholar
  9. 9.
    Imahori, S., Matsui, T., Miyashiro, R.: A 2.75-approximation algorithm for the unconstrained traveling tournament problem. Ann. Oper. Res. 218(1), 237–247 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Irnich, S.: A new branch-and-price algorithm for the traveling tournament problem. Eur. J. Oper. Res. 204(2), 218–228 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: an annotated bibliography. Comput. Oper. Res. 37(1), 1–19 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Khelifa, M., Boughaci, D.: A variable neighborhood search method for solving the traveling tournaments problem. Electr. Notes Discrete Math. 47, 157–164 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Khelifa, M., Boughaci, D.: Hybrid harmony search combined with variable neighborhood search for the traveling tournament problem. In: Nguyen, N.-T., Manolopoulos, Y., Iliadis, L., Trawiński, B. (eds.) ICCCI 2016, Part I. LNCS (LNAI), vol. 9875, pp. 520–530. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-45243-2_48CrossRefGoogle Scholar
  14. 14.
    Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Lim, A., Rodrigues, B., Zhang, X.: A simulated annealing and hill-climbing algorithm for the traveling tournament problem. Eur. J. Oper. Res. 174(3), 1459–1478 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Michael, T.: Challenge traveling tournament instances. http://mat.tepper.cmu.edu/TOURN/. Accessed Jan 2018
  17. 17.
    Rasmussen, R.V., Trick, M.A.: A Benders approach for the constrained minimum break problem. Eur. J. Oper. Res. 177(1), 198–213 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Rasmussen, R.V., Trick, M.A.: Round robin scheduling-a survey. Eur. J. Oper. Res. 188(3), 617–636 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Rasmussen, R.V., Trick, M.A.: The timetable constrained distance minimization problem. Ann. Oper. Res. 171(1), 45 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eur. J. Oper. Res. 179(3), 775–787 (2007)zbMATHCrossRefGoogle Scholar
  21. 21.
    Rosenkrantz, D.J., Stearns, R.E., Lewis, P.M.: An analysis of several heuristics for the traveling salesman problem. In: Ravi, S.S., Shukla, S.K. (eds.) Fundamental Problems in Computing, pp. 45–69. Springer, Dordrecht (2009).  https://doi.org/10.1007/978-1-4020-9688-4_3CrossRefGoogle Scholar
  22. 22.
    Thielen, C., Westphal, S.: Complexity of the traveling tournament problem. Theor. Comput. Sci. 412(4–5), 345–351 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Westphal, S., Noparlik, K.: A 5.875-approximation for the traveling tournament problem. Ann. Oper. Res. 218(1), 347–360 (2014)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Computer Science-Laboratory of Research in Artificial Intelligence LRIAUSTHBBab EzzouarAlgeria
  2. 2.Department of Computer Science and Operations Research HERON LaboratoryMontrealCanada

Personalised recommendations