Automatic Discovery and Exploitation of Promising Subproblems for Tabulation

  • Özgür Akgün
  • Ian P. Gent
  • Christopher Jefferson
  • Ian Miguel
  • Peter NightingaleEmail author
  • András Z. Salamon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11008)


The performance of a constraint model can often be improved by converting a subproblem into a single table constraint. In this paper we study heuristics for identifying promising subproblems. We propose a small set of heuristics to identify common cases such as expressions that will propagate weakly. The process of discovering promising subproblems and tabulating them is entirely automated in the tool Savile Row. A cache is implemented to avoid tabulating equivalent subproblems many times. We give a simple algorithm to generate table constraints directly from a constraint expression in Savile Row. We demonstrate good performance on the benchmark problems used in earlier work on tabulation, and also for several new problem classes.



We thank EPSRC for grants EP/P015638/1 and EP/P026842/1. Dr Jefferson holds a Royal Society University Research Fellowship.


  1. 1.
    Mohr, R., Masini, G.: Good old discrete relaxation. In: Proceedings of ECAI 1988, pp. 651–656. Pitman Publishing (1988)Google Scholar
  2. 2.
    Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P.: Data structures for generalised arc consistency for extensional constraints. In: Proceedings of AAAI 2007, pp. 191–197. AAAI Press (2007).
  3. 3.
    Lecoutre, C.: STR2: optimized simple tabular reduction for table constraints. Constraints 16(4), 341–371 (2011). Scholar
  4. 4.
    Bessiere, C.: Constraint propagation. In: Handbook of Constraint Programming, pp. 29–83. Elsevier (2006)Google Scholar
  5. 5.
    Gent, I.P., Jefferson, C., Kelsey, T., Lynce, I., Miguel, I., Nightingale, P., Smith, B.M., Tarim, S.A.: Search in the patience game ‘Black Hole’. AI Communications 20(3), 211–226 (2007). Scholar
  6. 6.
    Gargani, A., Refalo, P.: An efficient model and strategy for the steel mill slab design problem. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 77–89. Springer, Heidelberg (2007). Scholar
  7. 7.
    Dekker, J.J., Björdal, G., Carlsson, M., Flener, P., Monette, J.N.: Auto-tabling for subproblem presolving in MiniZinc. Constraints 22(4), 512–529 (2017). Scholar
  8. 8.
    Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc: towards a standard cp modelling language. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). Scholar
  9. 9.
  10. 10.
    Le Provost, T., Wallace, M.: Domain independent propagation. In: Proceedings of FGCS: International Conference on Fifth Generation Computer Systems, pp. 1004–1011. IOS Press (1992).
  11. 11.
    Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically improving constraint models in Savile Row through associative-commutative common subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 590–605. Springer, Cham (2014). Scholar
  12. 12.
    Nightingale, P., Spracklen, P., Miguel, I.: Automatically improving SAT encoding of constraint problems through common subexpression elimination in savile row. In: Pesant, G. (ed.) CP 2015. LNCS, vol. 9255, pp. 330–340. Springer, Cham (2015). Scholar
  13. 13.
    Nightingale, P., Akgün, O., Gent, I.P., Jefferson, C., Miguel, I., Spracklen, P.: Automatically improving constraint models in Savile Row. Artif. Intell. 251, 35–61 (2017). Scholar
  14. 14.
    Nightingale, P., Rendl, A.: Essence’ description (2016). arXiv:1601.02865 [cs.AI]
  15. 15.
    Bessière, C., Hebrard, E., Hnich, B., Walsh, T.: The complexity of reasoning with global constraints. Constraints 12(2), 239–259 (2007). Scholar
  16. 16.
    Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proceedings of AAAI 1996, pp. 209–215. AAAI Press (1996).
  17. 17.
    Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: Proceedings of ECAI 2006, pp. 98–102. IOS Press (2006).
  18. 18.
    Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Last conflict based reasoning. In: Proceedings of ECAI 2006, pp. 133–137. IOS Press (2006).
  19. 19.
    Chu, G., Stuckey, P.J., Schutt, A., Ehlers, T., Gange, G., Francis, K.: Chuffed (2018).
  20. 20.
    Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I., Nightingale, P., Salamon, A.Z.: Tabulation experimental software and additional results (2018).,
  21. 21.
    Van Hentenryck, P., Michel, L., Perron, L., Régin, J.-C.: Constraint programming in OPL. In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 98–116. Springer, Heidelberg (1999). Scholar
  22. 22.
    CSPLib: A problem library for constraints (1999).
  23. 23.
    Erdos, P., Sárközy, A.: On sets of coprime integers in intervals. Hardy-Ramanujan J. 16, 1–20 (1993).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Özgür Akgün
    • 1
  • Ian P. Gent
    • 1
  • Christopher Jefferson
    • 1
  • Ian Miguel
    • 1
  • Peter Nightingale
    • 1
    Email author
  • András Z. Salamon
    • 1
  1. 1.School of Computer Science, University of St AndrewsSt AndrewsUK

Personalised recommendations