Advertisement

Vector Autoregressions II: Extensions

  • John D. Levendis
Chapter
Part of the Springer Texts in Business and Economics book series (STBE)

Abstract

In the previous chapter, we covered the basics of reduced form VARs on stationary data. In this chapter, we continue learning about VARs, but we extend the discussion to structural VARs (SVARs) and VARS with integrated variables.

References

  1. Amisano, G., & Giannini, C. (2012). Topics in structural VAR econometrics. Berlin: Springer Science and Business Media.Google Scholar
  2. Blanchard, O. J., & Quah, D. (1989). The dynamic effects of aggregate demand and supply disturbances. American Economic Review, 79(4), 655–673.Google Scholar
  3. Dolado, J. J., & Lütkepohl, H. (1996). Making Wald tests work for cointegrated VAR systems. Econometric Reviews, 15(4), 369–386.CrossRefGoogle Scholar
  4. Enders, W. (2014). Applied econometric time series (3rd edn.). New York: Wiley.Google Scholar
  5. Granger, C. W. (2004). Time series analysis, cointegration, and applications. American Economic Review, 94, 421–425.CrossRefGoogle Scholar
  6. Kilian, L., & Lütkepohl, H. (2017). Structural vector autoregressive analysis. Cambridge University Press.Google Scholar
  7. Lütkepohl, H. (2005). New introduction to multiple time series analysis. Berlin: Springer Science and Business Media.CrossRefGoogle Scholar
  8. Rachev, S. T., Mittnik, S., Fabozzi, F. J., Focardi, S. M., et al. (2007). Financial econometrics: From basics to advanced modeling techniques (Vol. 150). New York: Wiley.Google Scholar
  9. Schenck, D. (2016). Log-run restrictions in a structural vector autoregression. https://blog.stata.com/2016/10/27/long-run-restrictions-in-a-structural-vector-autoregression/.Google Scholar
  10. Shumway, R. H., & Stoffer, D. S. (2006). Time series analysis and its applications: With R examples. New York: Springer Science and Business Media.Google Scholar
  11. Toda, H. Y., & Yamamoto, T. (1995). Statistical inference in vector autoregressions with possibly integrated processes. Journal of Econometrics, 66(1), 225–250.CrossRefGoogle Scholar
  12. Tsay, R. S. (2013). Multivariate time series analysis: With R and financial applications. New York: Wiley.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • John D. Levendis
    • 1
  1. 1.Department of EconomicsLoyola University New OrleansNew OrleansUSA

Personalised recommendations