Advertisement

Marine Mammals pp 133-175 | Cite as

Physiological Adaptations for Breath-Hold Diving

  • Randall W. Davis
Chapter

Abstract

Marine mammals are adapted to long interruptions in breathing that enable them to maintain an oxygen-based metabolism and physiological homeostasis while underwater. The pulmonary and cardiovascular changes associated with the dive response include cessation of breathing (apnea), a decrease in heart rate (bradycardia), a concurrent reduction in cardiac output, and peripheral vasoconstriction that maintains central arterial blood pressure. A dive response during aerobic dives enables marine mammals to balance the conflicting demands of (1) optimizing the distribution and use of blood and muscle oxygen stores to maximize the ADL over the normal range of diving metabolic rates and (2) ensuring that active muscle receives adequate oxygen as exertion increases. Blood volume and concentrations of blood hemoglobin and muscle myoglobin are elevated and serve as a significant oxygen store that increases aerobic dive duration. Hepatic and renal function along with digestion and assimilation continue during aerobic dives to maintain physiological homeostasis. Carnivorous marine mammals rely primarily on fat for ATP synthesis under resting, normoxic conditions, and during dives within their ADL. Herbivorous Sirenia have more carbohydrate in their diet than carnivorous marine mammals but probably rely on the aerobic metabolism of a mixture of carbohydrate, amino acids, and short-chain fatty acids, the latter of which result from the fermentation of structural polysaccharides such as cellulose.

Keywords

Asphyxia Dive response Heart rate Vasoconstriction Neuromodulation Hemoglobin Aerobic Myoglobin Fuel homeostasis 

References

  1. Adams SH, Costa DP (1993) Water conservation and protein metabolism in northern elephant seal pups during the postweaning fast. J Comp Physiol B 163:367–373PubMedCrossRefGoogle Scholar
  2. Alsina-Guerrero MM (2011) Blood values from wild and rehabilitating Antillean manatees (Trichechus manatus manatus) from Puerto Rico. Master Thesis, Western Illinois UniversityGoogle Scholar
  3. Andersen HT (1966) Physiological adaptations in diving vertebrates. Physiol Rev 46:212–243PubMedCrossRefGoogle Scholar
  4. Andersson JPA, Line MH, Runow W, Schagatay EKA (2002) Diving response and arterial oxygen saturation during apnea and exercise in breath-hold divers. J Appl Physiol 93:882–886PubMedCrossRefPubMedCentralGoogle Scholar
  5. Andrews RD, Jones DR, Williams JD, Thorson PH, Oliver GW, Costa DP, Le Boeuf BJ (1997) Heart rates of northern elephant seals diving at sea and resting on the beach. J Exp Biol 200:2083–2095PubMedGoogle Scholar
  6. Bert P (1870) Lecons Sur La Physiologie Comparee De La Respiration. Bailliere, Paris, pp 526–553Google Scholar
  7. Best RC (1983) Apparent dry-season fasting in Amazonian manatees (Mammalia: Sirenia). Biotropica 15:61–64CrossRefGoogle Scholar
  8. Bevan RM, Butler PJ (1992) Cardiac output and blood flow distribution during swimming and voluntary diving of the tufted duck (Aythya fuligula). J Exp Biol 168:199–217Google Scholar
  9. Blazquez E, Castro M, Herrera E (1971) Effect of a high-fat diet on pancreatic insulin release, glucose tolerance and hepatic gluconeogenesis in male rats. Rev Espan Fisol 27:297–304Google Scholar
  10. Blix AS, Folkow B (1983) Cardiovascular adjustments to diving in mammals and birds. In: Shepherd JT, Abboud FM (eds). Handbook of physiology: the cardiovascular system, section 2. Am Physiol Soc, Wiley-Blackwell, Bethesda, pp 917–945Google Scholar
  11. Blix AS, Walløe L, Messelt EB, Folkow LP (2010) Selective brain cooling and its vascular basis in diving seals. J Exp Biol 213:2610–2616PubMedCrossRefGoogle Scholar
  12. Bradley SE, Bing RS (1942) Renal function in the Harbor seal (Phoca vitulina) during asphyxial ischemia and pyrogenic hyperemia. J Cell Comp Physiol 19:229–237CrossRefGoogle Scholar
  13. Bradley SE, Mudge GH, Blake WD (1954) The renal excretion of sodium, potassium, and water by the harbor seal (Phoca vitulina): effect of apnea; sodium, potassium, and water loading; pitressin; and mercurial diuresis. J Cell Comp Physiol 43:1–22PubMedCrossRefGoogle Scholar
  14. Bron KM, Murdaugh HV, Millen JE, Lenthall R, Raskin P, Robin ED (1966) Arterial constrictor response in a diving mammal. Science 152:540–543PubMedCrossRefGoogle Scholar
  15. Burmester T, Hankeln T (2009) Commentary: what is the function of neuroglobin? J Exp Biol 212:1423–1428PubMedCrossRefGoogle Scholar
  16. Burmester T, Ebner B, Weich B, Hankeln T (2002) Cytoglobin: a novel globin type ubiquitously expressed in vertebrate tissues. Mol Biol Evol 19:416–421PubMedCrossRefGoogle Scholar
  17. Burns JM, Costa DP, Frost K, Harvey JT (2005) Development of body oxygen stores in harbor seals: effects of age, mass and body composition. Physiol Biochem Zool 78:1057–1068PubMedCrossRefGoogle Scholar
  18. Burns JM, Lestyk KC, Folkow LP, Hammill MO, Blix AS (2007) Size and distribution of oxygen stores in harp and hooded seals from birth to maturity. J Comp Physiol B 177:687–700PubMedCrossRefGoogle Scholar
  19. Butler PJ (1988) The exercise response and the “classical” diving response during natural submersion in birds and mammals. Can J Zool 66:29–39CrossRefGoogle Scholar
  20. Butler PJ, Jones DR (1982) The comparative physiology of diving in vertebrates. Adv Comp Physiol Biochem 8:179–364PubMedCrossRefGoogle Scholar
  21. Butler PJ, Woakes AJ (1987) Heart rate in humans during underwater swimming with and without breath-hold. Resp Physiol 69:387–399CrossRefGoogle Scholar
  22. Butler PJ, Jones DR (1997) Physiology of diving of birds and mammals. Physiol Rev 77:837–899PubMedCrossRefGoogle Scholar
  23. Butler PJ, Woakes AJ, Boyd IL, Kanatous S (1992) Relationship between heart rate and oxygen consumption during steady-state swimming in California sea lions. J Exp Biol 170:35–42PubMedGoogle Scholar
  24. Cabanac A, Folkow LP, Blix AS (1997) Volume capacity and contraction control of the seal spleen. J Appl Physiol 82:1989–1994PubMedCrossRefGoogle Scholar
  25. Cabanac AJ, Messelt EB, Folkow LP, Blix AS (1999) The structure and blood-storing function of the spleen of the hooded seal (Cystophora cristata). J Zool Lond 248:75–81CrossRefGoogle Scholar
  26. Castellini MA (2012) Life underwater: physiological adaptations to diving and living at sea. Compr Physiol 2:1889–1919PubMedGoogle Scholar
  27. Castellini MA, Castellini JM (2004) Defining the limits of diving biochemistry in marine mammals. Comp Biochem Physiol B 139:509–518PubMedCrossRefGoogle Scholar
  28. Castellini MA, Somero GN, Kooyman GL (1981) Glycolytic enzyme activities in tissue of marine and terrestrial mammals. Physiol Zool 54:242–252CrossRefGoogle Scholar
  29. Castellini MA, Murphy BJ, Fedak M, Ronald K, Gofton N, Hochachka PW (1985) Potentially conflicting metabolic demands of diving and exercise in seals. J Appl Physiol 58:392–399PubMedCrossRefGoogle Scholar
  30. Castellini MA, Costa DP, Huntley AC (1987) Fatty acid metabolism in fasting elephant seal pups. J Comp Physiol B 157:445–449PubMedCrossRefGoogle Scholar
  31. Castellini MA, Davis RW, Kooyman GL (1988) Blood chemistry regulation during repetitive dives in Weddell seals. Physiol Zool 61:379–386CrossRefGoogle Scholar
  32. Castellini MA, Kooyman GL, Ponganis PJ (1992) Metabolic rates of freely diving Weddell seals: correlations with oxygen stores, swim velocity and diving duration. J Exp Biol 165:181–194Google Scholar
  33. Castellini M, Elsner R, Baskurt OK, Wenby RB, Meiselman HJ (2006) Blood rheology of Weddell seals and bowhead whales. Biorheology 43:57–69PubMedGoogle Scholar
  34. Champagne CD, Houser DS, Crocker DE (2005) Glucose production and substrate cycle activity in a fasting adapted animal, the northern elephant seal. J Exp Biol 208:859–868PubMedCrossRefGoogle Scholar
  35. Champagne CD, Houser DS, Crocker DE (2006) Glucose metabolism during lactation in a fasting animal, the northern elephant seal. Am J Phys 291:R1129–R1137CrossRefGoogle Scholar
  36. Champagne CD, Houser DS, Fowler MA, Costa DP, Crocker DE (2012) Gluconeogenesis is associated with high rates of tricarboxylic acid and pyruvate cycling in fasting northern elephant seals. Am J Phys 303:R340–R352Google Scholar
  37. Cherepanov GG, Agaphonov VI (2010) Estimation of substrate-energetic fluxes in lactating cows. J Anim Feed Sci 19:13–23CrossRefGoogle Scholar
  38. Chicco AJ, Le CH, Schlater A, Nguyen A, Kaye S, Beals JW, Scalzo RL, Bell C, Gnaiger E, Costa DP, Crocker DE, Kanatous SB (2014) High fatty acid oxidation capacity and phosphorylation control despite elevated leak and reduced respiratory capacity in northern elephant seal muscle mitochondria. J Exp Biol 217:2947–2955PubMedCrossRefGoogle Scholar
  39. Clark CA, Burns JM, Schreer JF, Hammill MO (2007) A longitudinal and cross-sectional analysis of total body oxygen store development in nursing harbor seals (Phoca vitulina). J Comp Physiol 177:217–227CrossRefGoogle Scholar
  40. Condit RS, Ortiz CL (1987) The physiological transition from fasting to feeding in weaned elephant seal pups. Mar Mamm Sci 3:207–219CrossRefGoogle Scholar
  41. Conley KE, Kayar SR, Rosler K, Hoppler H, Weibel ER, Taylor CR (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand: IV. Capillaries and their relationship to oxidative capacity. Respir Physiol 69:47–64CrossRefGoogle Scholar
  42. Cowan DF, Smith TL (1999) Morphology of the lymphoid organs of the bottlenose dolphin, Tursiops truncatus. J Anat 194:505–517PubMedPubMedCentralCrossRefGoogle Scholar
  43. Crocker DE, Webb PM, Costa DP, Le Boeuf BJ (1998) Protein catabolism and renal function in lactating northern elephant seals. Physiol Zool 71:485–491PubMedCrossRefGoogle Scholar
  44. Czech-Damal NU, Geiseler SJ, Hoff MLM, Schliep R, Ramirez J-M, Folkow LP, Burmester T (2014) The role of glycogen, glucose and lactate in neuronal activity during hypoxia in the hooded seal (Cystophora cristata) brain. Neuroscience 275:374–383PubMedCrossRefGoogle Scholar
  45. Dasmeh P, Kepp KP (2012) Bridging the gap between chemistry, physiology, and evolution: quantifying the functionality of sperm whale myoglobin mutants. Comp Biochem Physiol A Mol Integr Physiol 161:9–17PubMedCrossRefGoogle Scholar
  46. Dasmeh P, Serohijos AWR, Kepp KP, Shakhnovich EI (2013a) Positively selected sites in cetacean myoglobins contribute to protein stability. PLoS Comput Biol 9(3):e1002929PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dasmeh P, Davis RW, Kepp KP (2013b) Aerobic dive limits of seals with mutant myoglobin using combined thermochemical and physiological data. Comp Biochem Physiol A Mol Integr Physiol 164:119–128PubMedCrossRefGoogle Scholar
  48. Davis RW (1983) Lactate and glucose metabolism in the resting and diving harbor seal (Phoca vitulina). J Comp Physiol 153:275–288CrossRefGoogle Scholar
  49. Davis RW, Kanatous SB (1999) Convective oxygen transport and tissue oxygen consumption in Weddell seals during aerobic dives. J Exp Biol 202:1091–1113PubMedGoogle Scholar
  50. Davis RW, Williams TM (2012) The dive response is exercise modulated to maximize aerobic dive duration. J Comp Physiol A 198:583–591CrossRefGoogle Scholar
  51. Davis RW, Castellini MA, Kooyman GL, Maue R (1983) Renal glomerular filtration rate and hepatic blood flow during voluntary dives in Weddell seals. Am J Phys 245:R743–R748Google Scholar
  52. Davis RW, Castellini MA, Kooyman GL (1991) Fuel homeostasis in harbor seals during submerged swimming. J Comp Physiol 160:627–635CrossRefGoogle Scholar
  53. Davis RW, Beltz WF, Peralta F, Witztum JL (1993) Role of plasma and tissue lipids in the energy metabolism of the harbour seal. Symp Zool Soc Lond 66:369–382Google Scholar
  54. Davis RW, Fuiman L, Williams TM, Le Boeuf BJ (2001) Three-dimensional movements and swimming activity of a female northern elephant seal. Comp Biochem Physiol A Mol Integr Physiol 129:759–770PubMedPubMedCentralCrossRefGoogle Scholar
  55. Davis RW (2014) A review of the multi-level adaptations for maximizing aerobic dive duration in marine mammals: From biochemistry to behavior. J Comp Physiol B 184:23–53PubMedCrossRefGoogle Scholar
  56. De Miranda MA Jr, Schlater AE, Green TL, Kanatous SB (2012) In the face of hypoxia: myoglobin increases in response to hypoxic conditions and lipid supplementation in cultured Weddell seal skeletal muscle cells. J Exp Biol 215:806–813PubMedCrossRefGoogle Scholar
  57. Dhindsa DS, Metcalfe J, Hoversland AS, Hartman RA (1974) Comparative studies of the respiratory functions of mammalian blood X. Killer whale (Orcinus orca linnaeus) and beluga whale (Delphinapterus leucas). Respir Physiol 20:93–103PubMedCrossRefGoogle Scholar
  58. Dolar MLL, Suarez P, Ponganis PJ, Kooyman GL (1999) Myoglobin in pelagic small cetaceans. J Exp Biol 202:227–236PubMedGoogle Scholar
  59. Duffield DA, Ridgway SH, Cornell LH (1983) Hematology distinguishes coastal and offshore forms of dolphins (Tursiops). Can J Zool 61:930–933CrossRefGoogle Scholar
  60. Edwards NA (1975) Scaling of renal functions in mammals. Comp Biochem Physiol 53:63–66CrossRefGoogle Scholar
  61. Eisenstein AB, Strack I, Steiner A (1974) Increased hepatic gluconeogenesis without a rise of glucagon secretion in rats fed a high fat diet. Diabetes 23:869–875PubMedCrossRefGoogle Scholar
  62. Elliott NM, Andrews RD, Jones DR (2002) Pharmacological blockade of the dive response: effects on heart rate and diving behaviour in the harbour seal (Phoca vitulina). J Exp Biol 205:3757–3765PubMedGoogle Scholar
  63. Elsner R (1965) Heart rate response in forced versus trained experimental dives of pinnipeds. Hval Skrif 48:24–29Google Scholar
  64. Elsner R, Gooden B (1983) Diving and asphyxia. Cambridge University Press, Cambridge, pp 1–59CrossRefGoogle Scholar
  65. Elsner R, Franklin DL, Van Citters RL (1964) Cardiac output during diving in an unrestrained sea lion. Nature 202:809–810PubMedCrossRefGoogle Scholar
  66. Elsner R, Shurley JT, Hammond DD, Brooks RE (1970) Cerebral tolerance to hypoxemia in asphyxiated Weddell seals. Respir Physiol 9:287–297PubMedCrossRefGoogle Scholar
  67. Elsner R, Øyasæter S, Almaas R, Saugstad OD (1998) Diving seals, ischemia–reperfusion and oxygen radicals. Comp Biochem Physiol A Mol Integr Physiol 119:975–980PubMedCrossRefGoogle Scholar
  68. Fahlman A, Hooker SK, Olszowkac A, Bostromd BL Jones DR (2009) Estimating the effect of lung collapse and pulmonary shunt on gas exchange during breath-hold diving: the Scholander and Kooyman legacy. Respir Physiol Neurobiol 165:28–39PubMedCrossRefGoogle Scholar
  69. Fedak MA (1986) Diving and exercise in seals: a benthic perspective. In: Brubakk AO, Kanwisher JW, Sundnes G (eds) Diving in animals and man. Tapir, Trondheim Norway, pp 11–32Google Scholar
  70. Ferretti G (2001) Extreme human breath-hold diving. Eur J Appl Physiol 84:254–271PubMedCrossRefGoogle Scholar
  71. Field J, Belding HS, Martin AW (1939) An analysis of the relation between basal metabolism and summated tissue respiration in the rat. J Cell Comp Physiol 14:143–157CrossRefGoogle Scholar
  72. Folkow LP, Blix AS (1999) Diving behaviour of hooded seals (Cystophora cristata) in the Greenland and Norwegian seas. Polar Biol 22:61–74CrossRefGoogle Scholar
  73. Folkow LP, Nordøy ES, Blix AS (2004) Distribution and diving behaviour of harp seals (Pagophilus groenlandicus) from the Greenland sea stock. Polar Biol 27:281–298CrossRefGoogle Scholar
  74. Folkow LP, Ramirez J-M, Ludvigsena S, Ramireza N, Blix AS (2008) Remarkable neuronal hypoxia tolerance in the deep-diving adult hooded seal (Cystophora cristata). Neurosci Lett 446:147–150PubMedCrossRefGoogle Scholar
  75. Foote AD, Liu Y, Thomas GWC, Vinar T, Alfoldi J, Deng J, Dugan S, van Elk N, Joshi V, Khan Z et al (2015) Convergent evolution of the genomes of marine mammals. Nat Gen 47:272–275CrossRefGoogle Scholar
  76. Foster GE, Sheel AW (2005) The human diving response, its function, and its control. Scand J Med Sci Sports 15:3–12PubMedCrossRefPubMedCentralGoogle Scholar
  77. Fowler SL, Costa DP, Arnould JPY, Gales NJ, Burns JM (2007) Ontogeny of oxygen stores and physiological diving capability in Australian sea lions. Funct Ecol 21:922–935CrossRefGoogle Scholar
  78. Fuson AL, Cowan DF, Kanatous SB, Polasek LK, Davis RW (2003) Adaptations to diving hypoxia in the heart, kidneys and splanchnic organs of harbor seals (Phoca vitulina). J Exp Biol 206:4139–4154PubMedCrossRefGoogle Scholar
  79. Gallivan GJ, Best RC (1980) Metabolism and respiration of the Amazonian manatee (Trichechus inunguis). Physiol Zool 53:245–253CrossRefGoogle Scholar
  80. George JC, Vallyathan NV, Ronald K (1971) The harp seal Pagophilus groenlandicus (Erxleben, 1777). VII. A histophysiological study of certain skeletal muscles. Can J Zool 49:25–30PubMedCrossRefGoogle Scholar
  81. Gordan R, Gwathmey JK, Xie LH (2015) Autonomic and endocrine control of cardiovascular function. World J Cardiol 7:204–214PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gordon MS, Boetius I, Evans DH, McCarthy R, Oglesby LC (1969) Aspects of the physiology of terrestrial life in amphibious fishes. J Exp Biol 50:141–149Google Scholar
  83. Greaves DK, Hughson RL, Topor Z, Schreer JF, Burns JM, Hammill MO (2004) Changes in heart rate variability during diving in young harbor seals, Phoca vitulina. Mar Mamm Sci 20:861–871CrossRefGoogle Scholar
  84. Grinnell SW, Irving L, Scholander PF (1942) Experiments on the relation between blood flow and heart rate in the diving seal. J Cell Comp Physiol 19:341–350CrossRefGoogle Scholar
  85. Guppy M, Hill RD, Schneider RC, Qvist J, Liggins GC, Zapol WM, Hochachka PW (1986) Microcomputer-assisted metabolic studies of voluntary diving of Weddell seals. Am J Phys 250:Rl75–R187Google Scholar
  86. Guyton GP, Stanek KS, Schneider RC, Hochachka PW, Hurford WE, Zapol DG, Liggins GC, Zapol WM (1995) Myoglobin saturation in free-diving Weddell seals. J Appl Physiol 79:1148–1155PubMedCrossRefGoogle Scholar
  87. Halasz NA, Elsner R, Garvie RS, Grotke GT (1974) Renal recovery from ischemia: a comparative study of harbor seal and dog kidneys. Am J Phys 227:1331–1335CrossRefGoogle Scholar
  88. Hall FG, Dill DB, Guzman B (1936) Comparative physiology in high altitudes. J Cell Comp Physiol 8:301–313CrossRefGoogle Scholar
  89. Hart JS, Irving L (1959) The energetics of harbor seals in air and in water with special considerations of seasonal changes. Can J Zool 37:447–457CrossRefGoogle Scholar
  90. Helbo S, Fago A (2012) Functional properties of myoglobins from five whale species with different diving capacities. J Exp Biol 215:3403–3410PubMedCrossRefGoogle Scholar
  91. Hiatt EP, Hiatt RB (1942) The effect of food on the glomerular filtration rate and renal blood flow in the harbor seal (Phoca vitulina). J Cell Comp Physiol 19:221–227CrossRefGoogle Scholar
  92. Hill RD, Schneider RC, Liggins GC, Schuette AH, Elliott RL, Guppy M, Hochachka PW, Qvist J, Falke KJ, Zapol WM (1987) Heart rate and body temperature during free diving of Weddell seals. Am J Phys 253:R344–R351Google Scholar
  93. Hindell MA, Slip DJ, Burton HR, Bryden MM (1992) Physiological implications of continuous, prolonged and deep dives of the southern elephant seal (Mirounga leonina). Can J Zool 70:370–379CrossRefGoogle Scholar
  94. Hochachka PW (1976) Design of metabolic and enzymatic machinery to fit lifestyle and environment. Biochem Soc Symp 41:3–31Google Scholar
  95. Hochachka PW (1981) Brain, lung, and heart functions during diving and recovery. Science 212:509–514PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hoffmann FG, Opazo JC, Storz JF (2011) Differential loss and retention of cytoglobin, myoglobin, and globin-E during the radiation of vertebrates. Genome Biol Evol 3:588–600PubMedPubMedCentralCrossRefGoogle Scholar
  97. Hoogewijs D, Ebner B, Germani F, Hoffmann FG, Fabrizius A, Moens L, Burmester T, Dewilde S, Storz JF, Vinogradov SN, Hankeln T (2012) Androglobin: a chimeric globin in metazoans that is preferentially expressed in mammalian testes. Mol Biol Evol 4:1105–1104CrossRefGoogle Scholar
  98. Hoppeler H, Kayar SR, Claassen H, Uhlmann E, Karas RH (1987) Adaptive variation in the mammalian respiratory system in relation to energetic demand. III. Skeletal muscles set the demand for oxygen. Respir Physiol 69:27–46CrossRefGoogle Scholar
  99. Horowitz JF, Klein S (2000) Lipid metabolism during endurance exercise. Am J Clin Nutr 72:558–563CrossRefGoogle Scholar
  100. Houser DS, Costa DP (2001) Protein catabolism in suckling and fasting northern elephant seal pups (Mirounga angustirostris). J Comp Physiol B 171:635–642PubMedCrossRefGoogle Scholar
  101. Houser DS, Champagne CD, Crocker DE (2007) Lipolysis and glycerol gluconeogenesis in simultaneously fasting and lactating northern elephant seals. Am J Phys 293:R2376–R2381Google Scholar
  102. Hurford WE, Hochachka PW, Schneider RC, Guyton GP, Stanek KS, Zapol DG, Liggins GC, Zapol WM (1996) Splenic contraction, catecholamine release, and blood volume redistribution during diving in the Weddell seal. J Appl Physiol 80:298–306PubMedCrossRefGoogle Scholar
  103. Irving L (1933) On the ability of mammals to survive without breathing. Collect Net 8:138–141Google Scholar
  104. Irving L (1938) Changes in the blood flow through the brain and muscles during the arrest of breathing. Am J Phys 122:207–214CrossRefGoogle Scholar
  105. Irving L (1939a) Respiration in diving mammals. Physiol Rev 19:112–134CrossRefGoogle Scholar
  106. Irving L (1939b) Changes m blood flow through the brain and muscle during arrest of breathing. Am J Physiol 122:207–214CrossRefGoogle Scholar
  107. Irving L, Solandt OM, Solandt DY, Fisher KC (1935) The respiratory metabolism of the seal and its adjustments to diving. J Cell Comp Physiol 7:137–151CrossRefGoogle Scholar
  108. Irving L, Scholander PF, Grinnell SW (1941a) Significance of the heart rate to the diving ability of seals. J Cell Comp Physiol 18:283–297CrossRefGoogle Scholar
  109. Irving L, Scholander PF, Grinnell SW (1941b) The respiration of the porpoise, Tursiops truncatus. J Cell Comp Physiol 17:145–168CrossRefGoogle Scholar
  110. Irving L, Scholander PF, Grinnell SW (1942) The regulation of arterial blood pressure in the seal during diving. Am J Phys 135:557–566CrossRefGoogle Scholar
  111. Javed F, He Q, Davidson LE, Thornton JC, Albu J, Boxt L, Krasnow N, Elia M, Kang P, Heshka S, Gallagher D (2010) Brain and high metabolic rate organ mass: contributions to resting energy expenditure beyond fat-free mass. Am J Clin Nutr 91:907–912PubMedPubMedCentralCrossRefGoogle Scholar
  112. Jobsis PD, Ponganis PJ, Kooyman GL (2001) Effects of training on forced submersion responses in harbor seals. J Exp Biol 204:3877–3885PubMedGoogle Scholar
  113. Johansen K, Aakhus T (1963) Central cardiovascular responses to submersion asphyxia in the duck. Am J Phys 205:1167–1171CrossRefGoogle Scholar
  114. Jones DR, Fisher HD, McTaggart S, West NH (1973) Heart rate during breath-holding and diving in the unrestrained harbor seal (Phoca vitulina richardi). Can J Zool 51:671–680PubMedCrossRefGoogle Scholar
  115. Kanatous SB, Davis RW, DiMichele LV, Cowan DF (1999) High aerobic capacities in the skeletal muscles of seals, sea lions and fur seals: an adaptation to diving hypoxia. J Appl Physiol 86:1247–1256PubMedCrossRefGoogle Scholar
  116. Kanatous SB, Elsner R, Mathieu-Costello O (2001) Muscle capillary supply in harbor seals. J Appl Physiol 90:1919–1926PubMedCrossRefGoogle Scholar
  117. Kanatous SB, Davis RW, Watson R, Polasek L, Williams TM, Mathieu-Costello O (2002) Aerobic capacities in the skeletal muscles of Weddell seals: key to longer dive durations? J Exp Biol 205:3601–3608PubMedGoogle Scholar
  118. Kayar SR, Hoppeler H, Lindstedt SL, Classen H, Jones JH, Essen-Gustavsson B, Taylor CR (1989) Total mitochondrial volume in relation to aerobic capacity of horses and steers. Pflugers Arch 413:343–347PubMedCrossRefGoogle Scholar
  119. Keith EO, Ortiz CL (1989) Glucose kinetics in neonatal elephant seals during post-weaning aphagia. Mar Mamm Sci 5:99–115CrossRefGoogle Scholar
  120. Kerem D, Elsner R (1973) Cerebral tolerance to asphyxial hypoxia in the harbor seal. Respir Physiol 19:188–200PubMedCrossRefGoogle Scholar
  121. Kerem D, Hammond DD, Elsner R (1973) Tissue glycogen levels in the Weddell seal, Leptonychotes weddellii: a possible adaptation to asphyxial hypoxia. Comp Biochem Physiol 45:731–736CrossRefGoogle Scholar
  122. Kettelhut IC, Foss MC, Migliorini RH (1980) Glucose homeostasis in a carnivorous animal (cat) and in rats fed a high-protein diet. Am J Phys 239:R437–R444Google Scholar
  123. Kirby VL, Ortiz CL (1994) Hormones and fuel regulation in fasting elephant seals. In: Le Boeuf BJ, Laws RM (eds) Elephant seals: population ecology, behavior, and physiology. University of California Press, Berkeley, pp 374–386Google Scholar
  124. Kooyman GL (1965) Techniques used in measuring diving capacities of Weddell seals. Polar Rec 12:391–394CrossRefGoogle Scholar
  125. Kooyman GL (1966) Maximum diving capacities of the Weddell seal, (Leptonychotes weddelli). Science 151:1553–1554PubMedCrossRefGoogle Scholar
  126. Kooyman GL (1973) Respiratory adaptions in marine mammals. Integr Comp Biol 13:457–468Google Scholar
  127. Kooyman GL (1989) Diverse divers: physiology and behavior. Springer, Berlin, p 200CrossRefGoogle Scholar
  128. Kooyman GL, Campbell WB (1972) Heart rates in freely diving Weddell seals, Leptonychotes weddelli. Comp Biochem Physiol 43A:31–36CrossRefGoogle Scholar
  129. Kooyman GL, Ponganis PJ (1998) The physiological basis of diving to depth: birds and mammals. Annu Rev Physiol 60:19–32PubMedCrossRefGoogle Scholar
  130. Kooyman GL, Kerem DH, Campbell WB, Wright JJ (1971) Pulmonary function in freely diving Weddell seals, Leptonychotes weddelli. Respir Physiol 12:271–282PubMedCrossRefGoogle Scholar
  131. Kooyman GL, Wahrenbrock EA, Castellini MA, Davis RW, Sinnett EE (1980) Aerobic and anaerobic metabolism during voluntary diving in Weddell seals: evidence of preferred pathways from blood chemistry and behavior. J Comp Physiol B 138:335–346CrossRefGoogle Scholar
  132. Kooyman GL, Ponganis PJ, Howard RS (1999) Diving animals. In: Lundgren CEG, Miller JN (eds) The lung at depth. Marcel Dekkar Inc., New York, pp 587–614Google Scholar
  133. Kvietys PR, Granger DN (1982) Relation between intestinal blood flow and oxygen uptake. Am J Phys 242:G202–G208Google Scholar
  134. Ladd M, Raisz L, Crowder CH, Page LB (1951) Filtration rate and water diuresis in the seal, Phoca vitulina. J Cell Comp Physiol 38:157–164PubMedCrossRefGoogle Scholar
  135. Le Boeuf BJ, Naito BJ, Huntley AC, Asaga T (1989) Prolonged, continuous, deep diving by northern elephant seals. Can J Zool 67:2514–2519CrossRefGoogle Scholar
  136. Leivestad H, Andersen HT, Scholander PF (1957) Physiological response to air exposure in codfish. Science 126:9CrossRefGoogle Scholar
  137. Lenfant C (1969) Physiological properties of blood of marine mammals. In: Andersen HT (ed) The biology of marine mammals. Academic Press, New York, pp 65–94Google Scholar
  138. Lenfant C, Johansen K, Torrance JD (1970) Gas transport and oxygen storage capacity in some pinnipeds and the sea otter. Respir Physiol 9:277–286PubMedCrossRefGoogle Scholar
  139. Lestyk KC, Folkow LP, Blix AS, Hammill MO, Burns JM (2009) Development of myoglobin concentration and acid buffering capacity in harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals from birth to maturity. J Comp Physiol B 179:985–996PubMedCrossRefGoogle Scholar
  140. Levey AS, Coresh JC (2012) Chronic kidney disease. Lancet 379:165–180PubMedCrossRefGoogle Scholar
  141. Malvin RL, Rayner M (1968) Renal function and blood chemistry in Cetacea. Am J Phys 214:187–191CrossRefGoogle Scholar
  142. Marino L, Toren K, LeFebvre L (2006) Does diving limit brain size in cetaceans? Mar Mamm Sci 22:413–425CrossRefGoogle Scholar
  143. Mathieu O, Krauer R, Hoppeler H, Gehr P, Lindstedt SL, Alexander RM, Taylor CR, Weibel ER (1981) Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass. Respir Physiol 44:113–128PubMedCrossRefGoogle Scholar
  144. McDonald BI, Ponganis PJ (2013) Insights from venous oxygen profiles: oxygen utilization and management in diving California sea lions. J Exp Biol 216:3332–3341PubMedCrossRefGoogle Scholar
  145. Meir JU, Champagne CD, Costa DP, Williams CL, Ponganis PJ (2009) Extreme hypoxemic tolerance and blood oxygen depletion in diving elephant seals. Am J Phys 297:R927–R939Google Scholar
  146. Mirceta S, Signore AV, Burns JM, Cossins AR, Campbell KL, Berenbrink M (2013) Evolution of mammalian diving capacity traced by myoglobin net surface charge. Science 340:1303–1311CrossRefGoogle Scholar
  147. Mitz SA, Reuss S, Folkow LP, Blix AS, Ramirez JM, Hankeln T, Burmester T (2009) When the brain goes diving: glial oxidative metabolism may confer hypoxia tolerance to the seal brain. Neuroscience 163:552–560PubMedCrossRefGoogle Scholar
  148. Murdaugh HV, Schmidt-Nielsen B, Wood JW, Mitchell ML (1961) Cessation of renal function during diving in the trained seal (Phoca vitulina). J Cell Comp Physiol 58:261–265PubMedCrossRefGoogle Scholar
  149. Nishizaki T, Ikegami T, Hiroshige S, Hashimoto K, Uchiyama H, Yoshizumi T, Kishikawa K, Shimada M, Sugimachi K (2001) Small graft for living donor liver transplantation. Ann Surg 233:575–580PubMedPubMedCentralCrossRefGoogle Scholar
  150. Noldge-Schomburg GFE, Armbruster K, Kopp KH, Haberstroh J, Fittkau A, Geiger K (1996) Splanchnic O2 uptake remains O2 supply independent during progressive hypoxic hypoxia. Anesthesiology 85:230Google Scholar
  151. Noren SR, Williams TM, Pabst DA, McLellan WA, Dearolf JL (2001) The development of diving in marine endotherms: preparing the skeletal muscles of dolphins, penguins, and seals for activity during submergence. J Comp Physiol B 171:127–134PubMedCrossRefGoogle Scholar
  152. Noren SR, Lacave G, Wells RS, Williams TM (2002) The development of blood oxygen stores in bottlenose dolphins (Tursiops truncatus): implications for diving capacity. J Zool Lond 258:105–113CrossRefGoogle Scholar
  153. Ortiz R (2001) Osmoregulation in marine mammals. J Exp Biol 204:1831–1844PubMedGoogle Scholar
  154. Ortiz RM, Houser DS, Wade CD, Ortiz CL (2003) Hormonal changes associated with the transition between nursing and natural fasting in northern elephant seals (Mirounga angustirostris). Gen Comp Endocrinol 130:78–83PubMedCrossRefGoogle Scholar
  155. Parkos CA, Wahrenbrock EA (1987) Acute effects of hypercapnia and hypoxia on minute ventilation in unrestrained Weddell seals. Respir Physiol 67:197–207PubMedCrossRefGoogle Scholar
  156. Panneton WM (2013) The mammalian diving response: an enigmatic reflex to preserve life? Physiol 28:284–297CrossRefGoogle Scholar
  157. Pernia SD, Hill A, Ortiz CL (1980) Urea turnover during prolonged fasting in the northern elephant seal. Comp Biochem Physiol 65:731–734Google Scholar
  158. Pernia SD, Costa DP, Ortiz CL (1989) Glomerular filtration rate in weaned elephant seal pups during natural, long term fasts. Can J Zool 67:1752–1756CrossRefGoogle Scholar
  159. Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) Neuroglobin and cytoglobin: fresh blood for the vertebrate globin family. EMBO Rep 3:1146–1151PubMedPubMedCentralCrossRefGoogle Scholar
  160. Polasek L, Davis RW (2001) Heterogeneity of myoglobin distribution in the locomotory muscles of five cetacean species. J Exp Biol 204:209–215PubMedGoogle Scholar
  161. Polasek L, Dickson KA, Davis RW (2006) Spatial heterogeneity of aerobic and glycolytic enzyme activities and myoglobin concentration in the epaxial swimming muscles of the harbor seal (Phoca vitulina). Am J Phys 290:R1720–R1727Google Scholar
  162. Polasek LK, Frost C, David JHM, Meyer MA, Davis RW (2016) Myoglobin distribution in the locomotory muscles of Cape fur seals (Arctocephalus pusillus pusillus). Aquat Mamm 42:421–427CrossRefGoogle Scholar
  163. Ponganis PJ (2011) Diving mammals. Compr Physiol 1:517–535Google Scholar
  164. Ponganis PJ, Pierce RW (1978) Muscle metabolic profiles and fiber type composition in some marine mammals. Comp Biochem Physiol 59:99–102Google Scholar
  165. Ponganis PJ, Ponganis EP, Ponganis KV, Kooyman GL (1990a) Swimming velocities in otariids. Can J Zool 68:2105–2112CrossRefGoogle Scholar
  166. Ponganis PJ, Kooyman GL, Zornow MH, Castellini MA, Croll DA (1990b) Cardiac output and stroke volume in swimming harbor seals. J Comp Physiol B 160:473–482CrossRefGoogle Scholar
  167. Ponganis PJ, Kooyman GL, Zornow MH (1991) Cardiac output in swimming California sea lions, Zalophus californianus. Physiol Zool 64:1296–1306CrossRefGoogle Scholar
  168. Ponganis PJ, Kooyman GL, Winter LM, Starke LN (1997a) Heart rate and plasma lactate responses during submerged swimming and trained diving in California sea lions, Zalophus californianus. J Comp Physiol B 167:9–16PubMedCrossRefGoogle Scholar
  169. Ponganis PJ, Costello ML, Starke LN, Mathieu-Costello O, Kooyman GL (1997b) Structural and biochemical characteristics of locomotory muscles of emperor penguins, Aptenodytes forsteri. Respir Physiol 109:73–80PubMedCrossRefGoogle Scholar
  170. Ponganis PJ, McDonald BI, Tift MS, Williams CL (2017) Heart rate regulation in diving sea lions: the vagus nerve rules. J Exp Biol 220:1372–1381PubMedCrossRefGoogle Scholar
  171. Prewitt JS, Freistroffer DV, Schreer JF, Hammill MO, Burns JM (2010) Postnatal development of muscle biochemistry in nursing harbor seal (Phoca vitulina) pups: limitations to diving behavior? J Comp Physiol B 180:757–766PubMedCrossRefGoogle Scholar
  172. Qvist J, Weber RE, Zapol WM (1981) Oxygen equilibrium properties of blood and hemoglobin of fetal and adult Weddell seals. J Appl Physiol 50:999–1005PubMedCrossRefGoogle Scholar
  173. Qvist J, Hill RD, Schneider RC, Falke KJ, Liggins GC, Guppy M, Elliot RL, Hochachka PW, Zapol WM (1986) Hemoglobin concentrations and blood gas tensions of freediving Weddell seals. J Appl Physiol 61:1560–1569PubMedCrossRefGoogle Scholar
  174. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789PubMedPubMedCentralCrossRefGoogle Scholar
  175. Richet C (1899) De la resistance des canards a l’asphyxie. J Physiol Pathol Gen 1:641–650Google Scholar
  176. Richmond JP, Burns JM, Rea LD (2006) Ontogeny of total body oxygen stores and aerobic dive potential in Steller sea lions (Eumetopias jubatus). J Comp Physiol B 176:535–545PubMedCrossRefGoogle Scholar
  177. Ridgway SH (1972) Homeostasis in the aquatic environment. In: Ridgway SH (ed) Mammals of the sea: biology and medicine. Charles C. Thomas Publisher, Springfield, pp 590–747Google Scholar
  178. Ridgway SH, Carder DA, Clark W (1975) Conditioned bradycardia in the sea lion, Zalophus californianus. Nature 256:37–38PubMedCrossRefGoogle Scholar
  179. Ridgway SH, Howard R (1979) Dolphin lung collapse and intramuscular circulation during free diving: evidence from nitrogen washout. Sci 206:1182–1183CrossRefGoogle Scholar
  180. Ridgway SH, Johnson DG (1966) Blood oxygen and ecology of porpoises of three genera. Science 151:456–458PubMedCrossRefGoogle Scholar
  181. Roberts S, Samuels LT, Reinecke RM (1943) Previous diet and the apparent utilization of fat in the absence of the liver. Am J Phys 140:639–644CrossRefGoogle Scholar
  182. Rowell LB (1986) Human circulation regulation during physical stress. Oxford University Press, Oxford, New York, p 415Google Scholar
  183. Sapirstein LA (1958) Regional blood by fractional distribution of indicators. Am J Phys 193:161–168CrossRefGoogle Scholar
  184. Schagatay E, Van Kampen M, Emanuelsson S, Holm B (2000) Effects of physical and apnea training on apneic time and the diving response in humans. Eur J Appl Physiol 82:161–169PubMedCrossRefGoogle Scholar
  185. Schmidt-Nielsen B, Murdaugh HV, O’Dell R, Bacsanyj J (1959) Urea excretion and diving in the seal (Phoca vitulina). J Cell Comp Physiol 53:393–412PubMedCrossRefGoogle Scholar
  186. Schmidt-Nielsen K (1997) Animal physiology. Cambridge University Press, Cambridge, United Kingdom, pp 617Google Scholar
  187. Schneuer M, Flachsbarth S, Czech-Damal NU, Folkow LP, Siebert U, Burmester T (2012) Neuroglobin of seals and whales: evidence for a divergent role in the diving brain. Neuroscience 223:35–44PubMedCrossRefGoogle Scholar
  188. Scholander PF (1940) Experimental investigations on the respiratory function in diving mammals and birds. Hval Skrif, Norske Videnskamp-Akad, Oslo 22:1–131Google Scholar
  189. Scholander PF (1963) The master switch of life. Sci Am 209:92–106PubMedCrossRefGoogle Scholar
  190. Scholander PF (1964) Animals in aquatic environments: diving mammals and birds. In: Dill DB, Adolph E, Wiber CG (eds) Handbook of physiology: adaptation to the environment, section 4. Am Physiol Soc, Bethesda, Wiley-Blackwell pp 729–740Google Scholar
  191. Scholander PF, Irving L (1941) Experimental investigations on the respiration and diving of the Florida manatee. J Cell Comp Physiol 17:169–191CrossRefGoogle Scholar
  192. Scholander PF, Irving L, Grinnell SW (1942) Aerobic and anaerobic changes in seal muscle during diving. J Biol Chem 142:431–440Google Scholar
  193. Schwarze K, Burmester T (2013) Conservation of globin genes in the “living fossil” Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family. Biochim Biophys Acta 1834:801–1812Google Scholar
  194. Scott W, Stevens J, Binder-Macleod SA (2001) Human skeletal muscle fiber type classifications. Phys Ther 81:1810–1816PubMedPubMedCentralGoogle Scholar
  195. Shero MR, Andrews RD, Lestyk KC, Burns JM (2012) Development of the aerobic dive limit and muscular efficiency in northern fur seals (Callorhinus ursinus). J Comp Physiol B 182:425–436PubMedCrossRefPubMedCentralGoogle Scholar
  196. Sierra E, Fernández A, Espinosa de los monteros A, Díaz-Delgado J, Bernaldo de Quirós Y, García-Álvarez N, Arbelo M, Herráez P (2015) Comparative histology of muscle in free ranging cetaceans: shallow versus deep diving species. Sci Rep – Nature 5:15909Google Scholar
  197. Sinnett EE, Kooyman GL, Wahrenbrock EA (1978) Pulmonary circulation of the harbor seal. J Appl Physiol 45:718–727PubMedCrossRefGoogle Scholar
  198. Snyder GK (1983) Respiratory adaptations in diving mammals. Respir Physiol 54:269–294PubMedCrossRefPubMedCentralGoogle Scholar
  199. Soini HO, Takala J, Nordin AJ, Makisalo HJ, Hockerstedt KAV (1992) Peripheral and liver tissue oxygen tensions in hemorrhagic shock. Crit Care Med 20:1330–1334PubMedCrossRefGoogle Scholar
  200. Spence-Bailey LM, Verrier D, Arnould JPY (2007) The physiological and behavioural development of diving in Australian fur seal (Arctocephalus pusillus doriferus) pups. J Comp Physiol B 177:483–494PubMedCrossRefPubMedCentralGoogle Scholar
  201. Staron RS (1997) Human skeletal muscle fiber types: delineation, development, and distribution. Can J Appl Physiol 22:307–327PubMedCrossRefPubMedCentralGoogle Scholar
  202. Staron RS, Hikida RS, Murray TF, Hagerman FC, Hagerman MY (1989) Lipid depletion and repletion in skeletal muscle following a marathon. J Neurol Sci 94:29–40PubMedCrossRefPubMedCentralGoogle Scholar
  203. Stellingwerff T, Boon H, Jonkers RAM, Senden JM, Spriet LL, Koopman R, van Loon LJC (2007) Significant intramyocellular lipid use during prolonged cycling in endurance trained males as assessed by three different methodologies. Am J Physiol Endocrinol Metab 292:E1715–E1723PubMedCrossRefPubMedCentralGoogle Scholar
  204. Storz JF, Opazo JC, Hoffmann FG (2013) Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol 66:469–478PubMedCrossRefGoogle Scholar
  205. Sun YB, Zhou WP, Liu HQ, Irwin DM, Shen YY, Zhang YP (2013) Genome-wide scans for candidate genes involved in the aquatic adaptation of dolphins. Genome Biol Evol 5:130–139PubMedCrossRefGoogle Scholar
  206. Suzuki H, Fuwa H (1970) Influence of dietary composition on the capacity of glucose formation in the liver of rats. Agric Biol Chem 34:80–87CrossRefGoogle Scholar
  207. Taylor CR, Heglund NC, McMahon TA, Looney TR (1980) Energetic cost of generating muscular force during running. J Exp Biol 86:9–18Google Scholar
  208. Thometz NM, Murray MJ, Williams TM (2015) Ontogeny of oxygen storage capacity and diving ability in the southern sea otter (Enhydra lutris nereis): costs and benefits of large lungs. Physiol Biochem Zool. 88:311–327.PubMedCrossRefGoogle Scholar
  209. Thompson D, Fedak MA (1993) Cardiac responses of grey seals during diving at sea. J Exp Biol 174:139–164PubMedGoogle Scholar
  210. Thornton SJ, Spielman DM, Pelc NJ, Block WF, Crocker DE, Costa DP, Le Boeuf BJ, Hochachka PW (2001) Effects of forced diving on the spleen and hepatic sinus in northern elephant seal pups. Proc Natl Acad Sci 98:9413–9418PubMedCrossRefGoogle Scholar
  211. Tift MS, Houser DS, Crocker DE (2011) High-density lipoprotein remains elevated despite reductions in total cholesterol in fasting adult male elephant seals (Mirounga angustirostris). Comp Biochem Physiol B 159:214–219PubMedCrossRefGoogle Scholar
  212. Vazquez-Medina JP, Zenteno-Savín T, Elsner R, Ortiz RM (2012) Coping with physiological oxidative stress: a review of antioxidant strategies in seals. J Comp Physiol B 182:741–750PubMedPubMedCentralCrossRefGoogle Scholar
  213. Videler J, Kamermans P (1985) Differences between upstroke and downstroke in swimming dolphins. J Exp Biol 119:265–274PubMedGoogle Scholar
  214. Viscarra JA, Champagne CD, Crocker DE, Ortiz RM (2011) 5’AMP-activated protein kinase activity is increased in adipose tissue of northern elephant seal pups during prolonged fasting-induced insulin resistance. J Endocrinol 209:317–325PubMedPubMedCentralCrossRefGoogle Scholar
  215. Wagner PD (1991) Central and peripheral aspects of oxygen transport and adaptations with exercise. Sports Med 11:133–142PubMedCrossRefGoogle Scholar
  216. Watson RR, Miller TA, Davis RW (2003) Immunohistochemical fiber typing of harbor seal skeletal muscle. J Exp Biol 206:4105–4111PubMedCrossRefGoogle Scholar
  217. Watson RR, Miller TA, Davis RW (2007) Mitochondrial volume density and distribution in harbor seal skeletal muscle. J Comp Physiol B 177:89–98PubMedCrossRefGoogle Scholar
  218. White FN, Ikeda M, Elsner RW (1973) Adrenergic innervation of lare arteries of the seal. Comp Gen Pharmac 4:271–276CrossRefGoogle Scholar
  219. Wilford DC, Gray AT, Hempleman SC, Davis RW, Hill ER (1990) Temperature and the oxygen-hemoglobin dissociation curve of the harbor seal, (Phoca vitulina). Respir Physiol 79:137–144CrossRefGoogle Scholar
  220. Williams TM (1983) Locomotion in the North American mink, a semi-aquatic mammal. II. The effect of an elongate body on running energetics and gait patterns. J Exp Biol 105:283–295PubMedGoogle Scholar
  221. Williams TM, Kooyman GL, Croll DA (1991) The effect of submergence on heart rate and oxygen consumption of swimming seals and sea lions. J Comp Physiol B 160:637–644PubMedPubMedCentralCrossRefGoogle Scholar
  222. Williams TM, Fuiman LA, Horning M, Davis RW (2004) The cost of foraging by a marine predator, the Weddell seal Leptonychotes weddellii: pricing by the stroke. J Exp Biol 207:973–982PubMedPubMedCentralCrossRefGoogle Scholar
  223. Williams TM, Zavanelli M, Miller MA, Goldbeck RA, Morledge M, Casper D, Pabst DA, McLellan W, Cantin LP, Kliger DS (2008) Running, swimming and diving modifies neuroprotecting globins in the mammalian brain. Proc Biol Sci 275:751–758PubMedCrossRefGoogle Scholar
  224. Williams TM, Bengston P, Steller DL, Croll DA Davis RW (2015a) The healthy heart: lessons from nature’s elite athletes. Physiologist 30:349–357Google Scholar
  225. Williams TM, Fuiman L, Kendall T, Berry P, Richter B, Noren S, Shattock M, Farrell E, Stamper AM, Davis RW (2015b) Exercise intensity and depth alter bradycardia in deep-sea diving marine mammals. Nature Com 6:6055Google Scholar
  226. Williams TM, Blackwell SB, Richter B, Sinding MHS, Heide-Jørgensen MP (2017) Paradoxical escape responses by narwhals (Monodon monoceros). Science 358:1328–1331PubMedCrossRefGoogle Scholar
  227. Wolt R, Gelwick FP, Weltz F, Davis RW (2012) Foraging behavior and prey preference of sea otters (Enhydra lutris kenyoni) in a predominantly soft sediment habitat in Alaska. Mamm Biol 77:271–280CrossRefGoogle Scholar
  228. Worthy GAJ, Hickie JP (1986) Relative brain size in marine mammals. Am Nat 128:445–459CrossRefGoogle Scholar
  229. Worthy GAJ, Lavigne DM (1987) Mass loss, metabolic rate, and energy utilization by harp and grey seals during the postweaning fast. Physiol Zool 60:352–364CrossRefGoogle Scholar
  230. Wright TJ, Davis RW (2006) The effect of myoglobin concentration on aerobic dive limit in a Weddell seal. J Exp Biol 209:2576–2585PubMedCrossRefGoogle Scholar
  231. Wright T, Davis RW (2015) Myoglobin oxygen affinity in aquatic and terrestrial birds and mammals. J Exp Biol 218:2180–2189PubMedCrossRefGoogle Scholar
  232. Yeates LC, Williams TM, Fink TL (2007) Diving and foraging energetics of the smallest marine mammal, the sea otter (Enhydra lutris). J Exp Biol 210:1960–1970PubMedCrossRefGoogle Scholar
  233. Yim H-S, Cho YS, Guang X, Kang SG, Jeong J-Y, Cha S-S, Oh H-M et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46:88–92PubMedCrossRefGoogle Scholar
  234. Zapol WM, Liggins GC, Schneider RC, Qvist J, Snider MT, Creasy RK, Hochachka PW (1979) Regional blood flow during simulated diving in the conscious Weddell seal. J Appl Physiol 47:968–973PubMedCrossRefGoogle Scholar
  235. Zapol WM, Hill RD, Qvist J, Falke K, Schneider RC, Liggins GC, Hochachka PW (1989) Arterial gas tensions and hemoglobin concentrations of the freely diving Weddell seal. Undersea Biomed Res 16:363–373PubMedGoogle Scholar
  236. Zenteno-Savín T, Clayton-Hernandez E, Elsner R (2002) Diving seals: are they a model for coping with oxidative stress? Comp Biochem Physiol C 133:527–536Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Randall W. Davis
    • 1
  1. 1.Marine BiologyTexas A&M UniversityGalvestonUSA

Personalised recommendations