Advertisement

Return to the Sea: The Evolution of Marine Mammals

  • Randall W. Davis
Chapter

Abstract

Early Cetacea are classified as Archaeoceti (six families), and their fossils reveal the morphological and functional evolution of early, terrestrial Artiodactyla to fully aquatic Cetacea over 15 million years during the Eocene (~52 Mya). The evolution of modern Cetacea (Neoceti: Mysticeti and Odontoceti) began in the late Eocene (~37 Mya). As with Mysticeti, late Eocene Dorudontidae were a likely sister group of early Odontoceti. The evolution of Sirenia began in the early Eocene (56–48 Mya). Fossil pinnipedimorphs only extend to the late Oligocene (27–25 Mya). Morphological and molecular evidence support a monophyletic origin for the three extant families of pinnipeds (Otariidae, Odobenidae, and Phocidae) within the taxonomic order Carnivora. The earliest fossils of Enhydra sp. are from early Pleistocene (2.6–1.8 Mya). There is no fossil record to document the evolution of the physiological adaptations that occur in living marine mammals. The dive response and enhanced oxygen stores, which increased the aerobic dive duration, and blubber for thermal insulation may have been early adaptations in each of the marine mammal lineages. The exception are fur seals and the sea otter, which rely on waterproof fur. Adaptations to avoid the detrimental effects of pressure during deep diving may have come later.

Keywords

Evolution Phylogeny Fossils Archaeoceti Mysticeti Odontoceti Dugongs Manatees Phocidae Otariidae Odobenidae 

References

  1. Alroy J (1999) The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst Biol 48:107–118PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andrews CW (1906) A descriptive catalogue of the Tertiary Vertebrata of the Fayum, Egypt. British Museum (Natural History), London, pp 324Google Scholar
  3. Armfield BA, Zheng Z, Bajpai S, Vinyard CJ, Thewissen JGM (2013) Development and evolution of the unique cetacean dentition. PeerJ 1:e24.  https://doi.org/10.7717/peerj.24 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Arnason A, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA, Väinölä R (2006) Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol 41:345–354PubMedCrossRefPubMedCentralGoogle Scholar
  5. Bajpai S, Gingerich PD (1998) A new archaeocete (Mammalia, Cetacea) from India and the time of origin of whales. Proc Natl Acad Sci 95:15464–15468PubMedCrossRefPubMedCentralGoogle Scholar
  6. Barnes LG (1987) An early Miocene pinniped of the genus Desmatophoca (Mammalia: Otariidae) from Washington. Natural History Museum of Los Angeles County. Contrib Sci 382:1–20Google Scholar
  7. Bebej RM (2009) Swimming mode inferred from skeletal proportions in the fossil pinnipeds Enaliarctos and Allodesmus (Mammalia, Carnivora). J Mamm Evol 16:77–97CrossRefGoogle Scholar
  8. Bebej RM, Zalmout IS, El-Aziz AAA, Antar MSM, Gingerich PD (2016) First remingtonocetid archaeocete (Mammalia, Cetacea) from the middle Eocene of Egypt with implications for biogeography and locomotion in early cetacean evolution. J Paleontol 89:882–893CrossRefGoogle Scholar
  9. Benoit J, Adnet S, El Mabrouk E, Khayati H, Ben Haj Ali M et al (2013) Cranial remain from Tunisia provides new clues for the origin and evolution of Sirenia (Mammalia, Afrotheria) in Africa. PLoS One 8(1):e54307.  https://doi.org/10.1371/journal.pone.0054307 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berta A (2018) Pinniped evolution. In: Würsig B, Thewissen JGM, Kovacs KM (eds) Encyclopedia of Marine Mammals. Academic Press, London, pp 712–722CrossRefGoogle Scholar
  11. Berta A, Churchill M (2012) Pinniped taxonomy: review of currently recognized species and subspecies, and evidence used for their description. Mamm Rev 42:207–234CrossRefGoogle Scholar
  12. Berta A, Morgan GS (1985) A new sea otter (Carnivora: Mustelidae) from the late Miocene and early Pliocene (Hemphillian) of North America. J Paleontol 59:809–819Google Scholar
  13. Berta A, Ray CE (1990) Skeletal morphology and locomotor capabilities of the archaic pinniped Enaliarctos mealsi. J Vertebr Paleontol 10:141–157CrossRefGoogle Scholar
  14. Berta A, Ray CE, Wyss AR (1989) Skeleton of the oldest known pinniped, Enaliarctos mealsi. Science 244:60–62PubMedCrossRefGoogle Scholar
  15. Berta A, Sumich JL, Kovacs KM (2015) Marine mammals: evolutionary biology. Academic Press, San Diego, p 725Google Scholar
  16. Berta A, Lanzetti A, Ekdale EG, Deméré TA (2016) From teeth to baleen and raptorial to bulk filter feeding in mysticete cetaceans: the role of paleontological, genetic, and geochemical data in feeding evolution and ecology. Integr Comp Biol 56:1271–1284PubMedCrossRefGoogle Scholar
  17. Bisconti M, Lambert O, Bosselaers M (2013) Taxonomic revision of Isocetus depauwi (Mammalia, Cetacea, Mysticeti) and the phylogenetic relationships of archaic ‘cetothere’ mysticetes. Palaeontology 56:95–127CrossRefGoogle Scholar
  18. Boessenecker RW (2016) A middle Pleistocene sea otter from Northern California and the antiquity of Enhydra in the Pacific Basin. J Mamm Evol.  https://doi.org/10.1007/s10914-016-9373-6 CrossRefGoogle Scholar
  19. Boessenecker RW, Churchill M (2013) A reevaluation of the morphology, paleoecology, and phylogenetic relationships of the enigmatic walrus Pelagiarctos. PLoS One 8:e54311PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boessenecker RW, Churchill M (2015) The oldest known fur seal. Biol Lett 2:20140835CrossRefGoogle Scholar
  21. Churchill M, Martinez-Caceres M, de Muizon C, Mnieckowski J, Geisler JH (2016) The origin of high-frequency hearing in whales. Curr Biol 26(16):2144–2149PubMedCrossRefPubMedCentralGoogle Scholar
  22. Clementz MT, Goswami A, Gingerich PD (2006) Isotopic records from early whales and sea cows: contrasting patterns of ecological transition. J Vertebr Paleontol 26:355–370CrossRefGoogle Scholar
  23. Cooper LN, Seiffert ER, Clementz M, Madar SI, Bajpai S, Hussain ST, Thewissen JGM (2014) Anthracobunids from the middle Eocene of India and Pakistan are stem perissodactyls. PLoS One 9(10):e109232.  https://doi.org/10.1371/journal.pone.0109232 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Davis RW, Bodkin JL, Coletti HA, Monson DH, Larson SE, Carswell LP, Nichol LM (2019) Future Directions in Sea Otter Research and Management. Frontiers Mar Sci 5:510.  https://doi.org/10.3389/fmars.2018.00510
  25. Deméré TA, Berta A (2001) A reevaluation of Proneotherium repenningifrom from the Miocene Astoria formation of Oregon and its position as a basal odobenid (Pinnipedia: Mammalia). J Vertebr Paleontol 21:279–310CrossRefGoogle Scholar
  26. Deméré TA, Berta A, Adam PJ (2003) Pinnipedimorph evolutionary biogeography. Bull Am Mus Nat Hist 279:32–76CrossRefGoogle Scholar
  27. Deméré TA, McGowen MR, Berta A, Gatesy J (2008) Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in Mysticete whales. Syst Biol 57:15–37PubMedCrossRefPubMedCentralGoogle Scholar
  28. Domning DP (1982) Evolution of manatees: a speculative history. J Vertebr Paleontol 56:599–619Google Scholar
  29. Domning DP (2001) The earliest known fully quadrupedal Sirenian. Nature 413:625–627PubMedCrossRefPubMedCentralGoogle Scholar
  30. Domning DP (2005) Fossil sirenia of the West Atlantic and Caribbean region. VII. Pleistocene Trichechus manatus Linnaeus, 1758. J Vertebr Paleontol 25:685–701CrossRefGoogle Scholar
  31. Domning DP, Gingerich PG (1994) Protosiren smithae, a new species (Mammalia, Sirenia), from the late middle Eocene of Wadi Hitan, Egypt. Mus Paleontol Univ Mich 29:69–87Google Scholar
  32. Fitzgerald EMG (2006) A bizarre new toothed mysticete (Cetacea) from Australia and the early evolution of baleen whales. Proc R Soc B 273:2955–2963PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fordyce RE, Marx FG (2012) The pygmy right whale Caperea marginata: the last of the cetotheres. Proc R Soc B 280:20122645PubMedCrossRefPubMedCentralGoogle Scholar
  34. Geisler JH, Uhen MD (2005) Phylogenetic relationships of extinct Cetartiodactyls: results of simultaneous analyses of molecular, morphological, and stratigraphic data. J Mamm Evol 12:145–160CrossRefGoogle Scholar
  35. Geisler JH, McGowen MR, Yang G, Gatesy J (2011) A supermatrix analysis of genomic, morphological, and paleontological data from crown cetacea. BMC Evol Biol 11:1–33CrossRefGoogle Scholar
  36. Gingerich PD (2012) Evolution of whales from land to sea. Proc Am Philos Soc 156:309–323Google Scholar
  37. Gingerich PD, Wells NA, Russell DE, Shah SMI (1983) Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science 220:403–406PubMedCrossRefPubMedCentralGoogle Scholar
  38. Gingerich PD, Domning DP, Blane CE, Uhen M (1994) Cranial morphology of Protosiren frausi (Mammalia, Sirenia) from the middle Eocene of Egypt: a new study using computed tomography. Contrib Mus Paleontol Univ Michigan 29:41–67Google Scholar
  39. Gingerich PD, Arif M, Clyde WC (1995) New archaeocetes (Mammalia, Cetacea) from the middle Eocene Domanda formation of the Sulaiman range, Punjab (Pakistan). Contrib Mus Paleontol Univ Michigan 29:291–330Google Scholar
  40. Gingerich PD, Haq M, Zalmout IS, Khan IH, Malkani MS (2001) Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:2239–2242PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gioncada A, Collareta A, Gariboldi K, Lambert O, DiCelma C, Bonaccorsi E, Urbina M, Bianucci G (2016) Inside baleen: exceptional microstructure preservation in a late Miocene whale skeleton from Peru. Geology 44:839–842CrossRefGoogle Scholar
  42. Godinot M (1994) Discovery of Cretaceous arboreal eutherians. Naturwissenschaften 81:79–81CrossRefGoogle Scholar
  43. Higdon JW, Bininda-Emonds ORP, Beck RM, Ferguson SH (2007) Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset. BMC Evol Biol 7:216PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hocking DP, Marx FG, Fitzgerald EMG, Evans AR (2017) Ancient whales did not filter feed with their teeth. Biol Lett 13:20170348PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hu Y, Meng J, Wang Y, Li C (2005) Large Mesozoic mammals fed on young dinosaurs. Nature 433:149–152CrossRefGoogle Scholar
  46. Hulbert RC, Petkewich RM, Bishop GA, Bukry D, Aleshire DP (1998) A new middle Eocene protocetid whale (Mammalia: Cetacea: Archaeoceti) and associated biota from Georgia. J Paleontol 72:907–927CrossRefGoogle Scholar
  47. Kilmer FH (1972) A new species of sea otter from the late Pleistocene of northwestern California. Bull South Calif Acad Sci 71:150–157Google Scholar
  48. Koepfli KP, Deere KA, Slater GJ, Begg C, Begg K, Grassman L, Lucherini M, Veron G, Robert K, Wayne RK (2008) Multigene phylogeny of the Mustelidae: resolving relationships, tempo and biogeographic history of a mammalian adaptive radiation. BMC Biol 6:10.  https://doi.org/10.1186/1741-7007-6-10 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kumar K, Sahni A (1986) Remingtonocetus harudiensis, new combination, a middle Eocene archaeocete (Mammalia, Cetacea) from western Kutch, India. J Vertebr Paleontol 6:326–349CrossRefGoogle Scholar
  50. Lambert WD (1997) The osteology and paleoecology of the giant otter Enhydritherium terranovae. J Vertebr Paleontol 17:738–749CrossRefGoogle Scholar
  51. Leffler SR (1964) Fossil mammals from the Elk River formation, Cape Blanco, Oregon. J Mammal 45:53–61CrossRefGoogle Scholar
  52. Lindgren J, Sjövall P, Thiel V et al. (2018) Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur. Nature.  https://doi.org/10.1038/s41586-018-0775-x PubMedCrossRefGoogle Scholar
  53. Marx FG, Lambert O, Uhen MD (2016a) Cetacean Paleobiology. Wiley Blackwell, Oxford, p 319CrossRefGoogle Scholar
  54. Marx FG, Hocking DP, Park T, Ziegler T, Evans AR, Fitzgerald EMG (2016b) Suction feeding preceded filtering in baleen whale evolution. Mem Mus Vic 75:71–82CrossRefGoogle Scholar
  55. Mitchell ED (1966) Northeastern Pacific Pleistocene sea otters. J Fish Res Board Can 23:1897–1911CrossRefGoogle Scholar
  56. Mitchell ED (1968) The Mio-Pliocene pinniped Imagotaria. J Fish Res Board Can 25:1843–1900CrossRefGoogle Scholar
  57. Peredo CM, Pyenson ND, Boersma AT (2017) Decoupling tooth loss from the evolution of baleen in whales. Front Mar Sci 4:67CrossRefGoogle Scholar
  58. Peredo CM, Pyenson ND, Marshall CD, Uhen MD (2018) Tooth loss precedes the origin of baleen in whales. Curr Biol 28:109CrossRefGoogle Scholar
  59. Pesce A, Bolognesi M, Bocedi A, Ascenzi P, Dewilde S, Moens L, Hankeln T, Burmester T (2002) Neuroglobin and cytoglobin: fresh blood for the vertebrate globin family. EMBO Rep 3:1146–1151PubMedPubMedCentralCrossRefGoogle Scholar
  60. Qiu Z, Schmidt-Kittler N (1982) On the phylogeny and zoogeography of the leptarctines (Carnivora, Mammalia). Paläont Z 56:131–145CrossRefGoogle Scholar
  61. Repenning CA (1976) Enhydra and Enhydriodon from the Pacific coast of North America. J Res US Geol Surv 4:305–315Google Scholar
  62. Repenning CA (1983) New evidence for the age of the Gubik Formation, Alaskan north Slope. Quat Res 19:356–372CrossRefGoogle Scholar
  63. Rice DW (1998) Marine mammals of the world. Society for marine mammalogy special publication 4:1–231, LawrenceGoogle Scholar
  64. Rybczynski N, Dawson MR, Tedford RH (2009) A semi-aquatic arctic mammalian carnivore from the Miocene epoch and origin of Pinnipedia. Nature 458:1021–1024PubMedCrossRefGoogle Scholar
  65. Savage RJG (1977) Review of early Sirenia. Syst Zool 25:344–351CrossRefGoogle Scholar
  66. Savage RJG, Domning DP, Thewissen JGM (1994) Fossil Sirenia of the West Atlantic and Caribbean region. V. The most primitive known sirenian, Prorastomus sirenoides Owen, 1855. J Vertebr Paleontol 14:427–449CrossRefGoogle Scholar
  67. Slater GJ, Goldbogen JA, Pyenson ND (2017) Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc R Soc B 284:20170546PubMedCrossRefGoogle Scholar
  68. Spaulding M, O’Leary MA, Gatesy J (2009) Relationships of cetacea (Artiodactyla) among mammals: increased taxon sampling alters interpretations of key fossils and character evolution. PLoS One 4(9):e7062PubMedPubMedCentralCrossRefGoogle Scholar
  69. Thewissen JG, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194PubMedCrossRefPubMedCentralGoogle Scholar
  70. Thewissen JGM (2014) The walking whales. University of California Press, Oakland, p 256Google Scholar
  71. Thewissen JGM, Fish FE (1997) Locomotor evolution in the earliest cetaceans: functional model, modem analogues, and paleontological evidence. Paleobiology 23:482–490CrossRefGoogle Scholar
  72. Thewissen JGM, Cooper LN, George JC, Bajpai S (2009) From land to water: the origin of whales, dolphins, and porpoises. Evol Edu Outreach 2:272–288CrossRefGoogle Scholar
  73. Thewissen JGM, Hussain ST (2000) Attockicetus praecursor, a new remingtonocetid cetacean from marine Eocene sediments of Pakistan. J Mamm Evol 7:133–146CrossRefGoogle Scholar
  74. Thewissen JGM, Hussain ST, Arif M (1994) Fossil evidence for the origin of aquatic locomotion in archaeocete whales. Science 263:210–212PubMedCrossRefPubMedCentralGoogle Scholar
  75. Thewissen JGM, Williams EM (2002) The early radiation of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annu Rev Ecol Syst 33:73–90CrossRefGoogle Scholar
  76. Thewissen JGM, Williams EM, Hussain ST (2001b) Eocene mammal faunas from northern Indo-Pakistan. J Vertebr Paleontol 21:347–366CrossRefGoogle Scholar
  77. Thewissen JGM, Williams EM, Roe LJ, Hussain ST (2001a) Skeletons of terrestrial cetaceans and the relationship of whales to artiodactyls. Nature 413:277–281PubMedCrossRefPubMedCentralGoogle Scholar
  78. Uhen MD (2007) Evolution of marine mammals: back to the sea after 300 million years. Anat Rec 290:514–22CrossRefGoogle Scholar
  79. Uhen MD (2008) A new Xenorophus-like odontocete cetacean from the Oligocene of North Carolina and a discussion of the basal odontocete radiation. J Syst Palaeontol 6:433–452CrossRefGoogle Scholar
  80. Uhen MD, Gingerich PD (2000) New genus of dorudontine archaeocete (Cetacea) from the middle-to-late Eocene of South Carolina. Mar Mamm Sci 17:1–34CrossRefGoogle Scholar
  81. Utrecht WLV (1965) On the growth of the baleen plate of the fin whale and the blue whale. Bijdr Dierk 35:3–38CrossRefGoogle Scholar
  82. Wang XM, McKenna MC, Dashzeveg D (2005) Amphicticeps and Amphicynodon (Arctoidea, Carnivora) from Hsanda Gol formation, Central Mongolia, and phylogeny of basal arctoids with comments on zoogeography. Am Mus Novit 3483:1–57CrossRefGoogle Scholar
  83. Willemsen GF (1992) A revision of the Pliocene and quaternary Lutrinae from Europe. Scr Geol 101:1–115Google Scholar
  84. Wilson DE, Bogan MA, Brownell RL Jr, Burdin AM, Maminov MK (1991) Geographic variation in sea otters, Enhydra lutris. J Mammal 72:22–36CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Randall W. Davis
    • 1
  1. 1.Marine BiologyTexas A&M UniversityGalvestonUSA

Personalised recommendations