Advertisement

Simulation in Obstetrics and Gynecology

  • Thomas P. Cacciola
  • Martin Martino
Chapter
Part of the Comprehensive Healthcare Simulation book series (CHS)

Abstract

Simulation training in obstetrics and gynecology has been used for hundreds of years. The apprenticeship model of training has evolved to include group simulations and virtual reality trainers. The American Congress of Obstetricians and Gynecologists (ACOG) and other professional societies have recognized the importance of simulation and formulated recommendations and/or curricula for appropriate training of residents, fellows, students, and staff. Obstetrics has utilized simulation mannequins to teach the birthing process and is taking advantage of simulation and the associated debriefing sessions for training in emergency and uncommon scenarios as well as in multidisciplinary training. Gynecology has used box trainers and virtual reality simulation to improve procedural skills of trainees outside the operating room using proficiency-based training paradigms. Simulation has also allowed for improvements in the objectivity of assessments. Future directions may include crowdsourcing for the evaluation of surgical proficiency and possibly for credentialing purposes.

Keywords

Simulation Residency training Obstetrics Gynecology OB-GYN Laparoscopic training Robotic training Crowdsourcing 

References

  1. 1.
    Seymour NE, Gallagher AG, Roman SA, O’Brien MK, Bansal VK, Andersen DK, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236:458–63; discussion 463–4.CrossRefGoogle Scholar
  2. 2.
    Larsen CR, Soerensen JL, Grantcharov TP, Dalsgaard T, Schouenborg L, Ottosen C, et al. Effect of virtual reality training on laparoscopic surgery: randomised controlled trial. BMJ. 2009;338:b1802.CrossRefGoogle Scholar
  3. 3.
    Aggarwal R, Darzi A. Simulation to enhance patient safety: why aren’t we there yet? Chest. 2011;140:854–8.CrossRefGoogle Scholar
  4. 4.
    Cody LF. Breeding Scottish obstetrics in Dr. Smellie’s London. In:Birthing a nation: sex, science and the conception of eighteenth century Britons. New York: Oxford University Press; 2005. p. 152–97.Google Scholar
  5. 5.
    Buck GH. Development of simulators in medical education. Gesnerus. 1991;48:7–28.PubMedGoogle Scholar
  6. 6.
    The University of Kentucky Research Foundation, Lexington, KY. (Inventors: Knapp CF and Eades GS of Lexington, KY.) US 3822486 (1974).Google Scholar
  7. 7.
    Larsen C, Oestergaard J, Ottesen B, Soerensen J. The efficacy of virtual reality simulation training in laparoscopy: a systematic review of randomized trials. Acta Obstet Gynecol Scand [serial online]. 2012;91(9):1015–28.CrossRefGoogle Scholar
  8. 8.
    Schreuder H, Wolswijk R, Zweemer R, Schijven M, Verheijen R. Training and learning robotic surgery, time for a more structured approach: a systematic review. BJOG [serial online]. 2012;119(2):137–49.Google Scholar
  9. 9.
    Lawrenc HC 3rd, Copel JA, et al. Quality patient care in labor and delivery: a call to action. Am J Obstet Gynecol. 2012;207(3):147–8.  https://doi.org/10.1016/j.ajog.2012.07.018.CrossRefGoogle Scholar
  10. 10.
    Goffman D. Introduction: the evolving role of simulation in maternal–fetal medicine. Semin Perinatol. 2013;37(3):139, ISSN 0146-0005.CrossRefGoogle Scholar
  11. 11.
    Goffman D, Colleen L, Bernstein PS. Simulation in maternal–fetal medicine: making a case for the need. Semin Perinatol. 2013;37(3):140–2, ISSN 0146-0005.CrossRefGoogle Scholar
  12. 12.
    Deering S, Auguste T, Lockrow E. Obstetric simulation for medical student, resident, and fellow education. Semin Perinatol. 2013;37(3):143–5, ISSN 0146-0005.CrossRefGoogle Scholar
  13. 13.
    Daniels K, Auguste T. Moving forward in patient safety: multidisciplinary team training. Semin Perinatol. 2013;37(3):146–50, ISSN 0146-0005.CrossRefGoogle Scholar
  14. 14.
    Smith A, Siassakos D, Crofts J, Draycott T. Simulation: improving patient outcomes. Semin Perinatol. 2013;37(3):151–6, ISSN 0146-0005.CrossRefGoogle Scholar
  15. 15.
    Karkowsky CE, Chazotte C. Simulation: improving communication with patients. Semin Perinatol. 2013;37(3):157–60, ISSN 0146-0005.CrossRefGoogle Scholar
  16. 16.
    Guise J-M, Mladenovic J. In situ simulation: identification of systems issues. Semin Perinatol. 2013;37(3):161–5, ISSN 0146-0005.CrossRefGoogle Scholar
  17. 17.
    Gardner R. Introduction to debriefing. Semin Perinatol. 2013;37(3):166–74, ISSN 0146-0005.CrossRefGoogle Scholar
  18. 18.
    Birsner ML, Satin AJ. Developing a program, a curriculum, a scenario. Semin Perinatol. 2013;37(3):175–8, ISSN 0146-0005.CrossRefGoogle Scholar
  19. 19.
    Deering S, Rowland J. Obstetric emergency simulation. Semin Perinatol. 2013;37(3):179–88, ISSN 0146-0005.CrossRefGoogle Scholar
  20. 20.
    Nitsche JF, Brost BC. The use of simulation in maternal–fetal medicine procedure training. Semin Perinatol. 2013;37(3):189–98, ISSN 0146-0005.CrossRefGoogle Scholar
  21. 21.
    Nitsche JF, Brost BC. Obstetric ultrasound simulation. Semin Perinatol. 2013;37(3):199–204, ISSN 0146-0005.CrossRefGoogle Scholar
  22. 22.
    ACOG Simulations Working Group. American Congress of Obstetrics and Gynecologists website. http://www.acog.org/About-ACOG/ACOG-Departments/Simulations-Consortium. Accessibility verified 15 Oct 2016.
  23. 23.
    ACOG OB-GYN Simulations Curricula. American Congress of Obstetrics and Gynecologists website. http://www.acog.org/About-ACOG/ACOG-Departments/Simulations-Consortium/OB-GYN-Simulations-Curricula. Accesibility verified 23 Oct 2016.
  24. 24.
    Howard SK, Gaba DM, Fish K, Yang G, Sarnquist F. Anesthesia crisis resource management training: teaching anesthesiologists to handle critical incidents. Aviat Space Environ Med. 1992;63:763–70.PubMedGoogle Scholar
  25. 25.
    Crofts JF, Fox R, Ellis D, Winter C, Hinshaw K, Draycott TJ. Observations from 450 shoulder dystocia simulations: lessons for skills training. Obstet Gynecol. 2008;112(4):906–12.CrossRefGoogle Scholar
  26. 26.
    Okuda Y, Bryson E, Levine A, et al. The utility of simulation in medical education: what is the evidence? Mt Sinai J Med, New York [serial online]. 2009;76(4):330–43.CrossRefGoogle Scholar
  27. 27.
    Nielsen P, Mann S. Team function in obstetrics to reduce errors and improve outcomes. Obstet Gynecol Clin N Am. 2008;35(1):81–95.CrossRefGoogle Scholar
  28. 28.
    American College of Obstetricians and Gynecologists. Shoulder dystocia. ACOG Practice Bulletin No. 40. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2002;100:1045–50.Google Scholar
  29. 29.
    Draycott TJ, Crofts JF, Ash JP, Wilson LV, Yard E, Sibanda T, Whitelaw A. Improving neonatal outcome through practical shoulder dystocia training. Obstet Gynecol. 2008;112(1):14–20.CrossRefGoogle Scholar
  30. 30.
    Rudolph JR, Simon R, Raemer DB, Eppich WJ. Debriefing as formative assessment: closing performance gaps in medical education. Acad Emerg Med. 2008;15(11):1010–6.CrossRefGoogle Scholar
  31. 31.
    Crofts JF, Bartlett C, Ellis D, Hunt LP, Fox R, Draycott TJ. Training for shoulder dystocia: a trial of simulation using low-fidelity and high-fidelity mannequins. Obstet Gynecol. 2006;108(6):1477–85.CrossRefGoogle Scholar
  32. 32.
    Weiner CP, Collins L, Bentley S, Dong Y, Satterwhite CL. Multi-professional training for obstetric emergencies in a U.S. hospital over a 7-year interval: an observational study. J Perinatol. 2016;36(1):19–24.  https://doi.org/10.1038/jp.2015.136.CrossRefPubMedGoogle Scholar
  33. 33.
    Centers for Disease Control and Prevention. Pregnancy mortality surveillance system. Available at http://www.cdc.gov/reproductivehealth/maternalinfanthealth/pmss.html. Accessibility verified 23 Oct 2016.
  34. 34.
    American College of Obstetricians and Gynecologists. Severe maternal morbidity: screening and review. Obstetric Care Consensus No. 5. Obstet Gynecol. 2016;128(3):670–1.Google Scholar
  35. 35.
    American Congress of Obstetricians and Gynecologists. Obstetric Care Consensus No. 5: severe maternal morbidity: screening and review. Obstet Gynecol. 2016;128(3):e54–60.CrossRefGoogle Scholar
  36. 36.
    Higgins M, Kfouri J, Biringer A, Seaward G, Windrim R. Teaching an experienced multidisciplinary team about postpartum hemorrhage: comparison of two different methods. J Obstet Gynaecol Can. 2015;37(9):824–8.CrossRefGoogle Scholar
  37. 37.
    Marshall N, Vanderhoeven J, Eden K, Segel S, Guise J. Impact of simulation and team training on postpartum hemorrhage management in non-academic centers. J Matern Fetal Neonatal Med. 2015;28(5):495–9.CrossRefGoogle Scholar
  38. 38.
    Maslovitz S, Barkai G, Lessing JB, et al. Recurrent obstetric management mistakes identified by simulation. Obstet Gynecol. 2007;109(6):1295–300.CrossRefGoogle Scholar
  39. 39.
    Hilton G, Daniels K, Goldhaber-Fiebert SN, Lipman S, Carvalho B, Butwick A. Checklists and multidisciplinary team performance during simulated obstetric hemorrhage. Int J Obstet Anesth. 2016;25:9–16.CrossRefGoogle Scholar
  40. 40.
    Egenberg S, Øian P, Bru L, Sautter M, Kristoffersen G, Eggebø T. Can inter-professional simulation training influence the frequency of blood transfusions after birth? Acta Obstet Gynecol Scand [serial online]. 2015;94(3):316–23.CrossRefGoogle Scholar
  41. 41.
    Fisher N, Bernstein PS, Satin A, et al. Resident training for eclampsia and magnesium toxicity management: simulation or traditional lecture? Am J Obstet Gynecol. 2010;203(379):e1–5.Google Scholar
  42. 42.
    Draycott T, Braod G, Chidly K. The development of an eclampsia box and fire drill. Br J Midwifery. 2000;8:26–30.CrossRefGoogle Scholar
  43. 43.
    Dupuis O, Decullier E, Clerc J, et al. Does forceps training on a birth simulator allow obstetricians to improve forceps blade placement? Eur J Obstet Gynecol Reprod Biol. 2011;159(2):305–9.CrossRefGoogle Scholar
  44. 44.
    Boston Children’s Hospital Simulator Program. SIMPeds 3D Print. http://simpeds.org/simpeds3d-print/. Accessibility verified 21 Dec 2016.
  45. 45.
    Berg CJ, Callaghan WM, Syverson C, et al. Pregnancy—related mortality in the United States, 1998 to 2005. Obstet Gynecol. 2010;116:1302–9.CrossRefGoogle Scholar
  46. 46.
    American College of Obstetricians and Gynecologists. Critical care in pregnancy. Practice Bulletin No. 170. American College of Obstetricians and Gynecologists. Obstet Gynecol. 2016;128:e147–54.CrossRefGoogle Scholar
  47. 47.
    Adams J, Cepeda Brito JR, Baker L, Hughes PG, Gothard MD, McCarroll ML, Davis J, Silber A, Ahmed RA. Management of maternal cardiac arrest in the third trimester of pregnancy: a simulation-based pilot study. Crit Care Res Prac. 2016;2016:5283765.Google Scholar
  48. 48.
    Fisher N, Eisen LA, Bayya JV, et al. Improved performance of maternal-fetal medicine staff after maternal cardiac arrest simulation-based training. Am J Obstet Gynecol. 2011;205:239.e1–5.CrossRefGoogle Scholar
  49. 49.
    Vassiliou MC, Feldman LS, Andrew CG, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg. 2005;190:107–13.CrossRefGoogle Scholar
  50. 50.
    Larsen CR, Grantcharov T, Schouenborg L, et al. Objective assessment of surgical competence in gynaecological laparoscopy: development and validation of a procedure-specific rating scale. BJOG. 2008;115:908–16.CrossRefGoogle Scholar
  51. 51.
    Ahlberg G, Enochsson L, Gallagher AG, Hedman L, Hogman C, McClusky DA III, et al. Proficiency-based virtual reality training significantly reduces the error rate for residents during their first 10 laparoscopic cholecystectomies. Am J Surg. 2007;193:797–804.CrossRefGoogle Scholar
  52. 52.
    Martin JA, Regehr G, Reznick R, MacRae H, Murnaghan J, Hutchison C, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84:273–8.CrossRefGoogle Scholar
  53. 53.
    Reznick R, Regehr G, MacRae H, Martin J, McCulloch W. Testing technical skill via an innovative “bench station” examination. Am J Surg. 1997;173:226–30.CrossRefGoogle Scholar
  54. 54.
    Aggarwal R, Ward J, Balasundaram I, Sains P, Athanasiou T, Darzi A. Proving the effectiveness of virtual reality simulation for training in laparoscopic surgery. Ann Surg. 2007;246:771–9.CrossRefGoogle Scholar
  55. 55.
    Geller EJ, Schuler KM, Boggess JF. Robotic surgical training program in gynecology: how to train residents and fellows. J Minim Invasive Gynecol. 2011;18(2):224–9.CrossRefGoogle Scholar
  56. 56.
    Lim PC, Kang E, Park DH. Learning curve and surgical outcome for robotic-assisted hysterectomy and lymphadenectomy: case-matched controlled comparison with laparoscopy and laparotomy for treatment of endometrial cancer. J Minim Invasive Gynecol. 2010;17(6):739–48.CrossRefGoogle Scholar
  57. 57.
    Siddiqui NY, Galloway ML, Geller EJ, et al. Validity and reliability of the robotic objective structured assessment of technical skills. Obstet Gynecol. 2014;123:1193–9.CrossRefGoogle Scholar
  58. 58.
    Sandadi S, Gadzinski JA, Lee S, Chi DS, Sonoda Y, Jewell EL, Brown CL, Gardner GJ, Barakat RR, Leitao MM Jr. Fellowship learning curve associated with completing a robotic assisted total laparoscopic hysterectomy. Gynecol Oncol. 2014;132(1):102–6.CrossRefGoogle Scholar
  59. 59.
    Smith AL, Krivak TC, Scott EM, Rauh-Hain JA, Sukumvanich P, Olawaiye AB, Richard SD. Dual-console robotic surgery compared to laparoscopic surgery with respect to surgical outcomes in a gynecologic oncology fellowship program. Gynecol Oncol. 2012;126(3):432–6.CrossRefGoogle Scholar
  60. 60.
    Chen C, White L, Kowalewski T, et al. Crowd-sourced assessment of technical skills (C-SATS): a novel method to evaluate surgical performance. J Surg Res. 2014;187:65–71.CrossRefGoogle Scholar
  61. 61.
    Polin MR, Siddiqui NY, Comstock BA, Hesham H, Brown C, Lendvay TS, Martino MA. Crowdsourcing: a valid alternative to expert evaluation of robotic surgery skills. Am J Obstet Gynecol. 2016;215(5):644.e1–7.  https://doi.org/10.1016/j.ajog.2016.06.033.CrossRefGoogle Scholar
  62. 62.
    Wang X, Mudie L, Brady CJ. Crowdsourcing: an overview and applications to ophthalmology. Curr Opin Ophthalmol. 2016;27:256–61.CrossRefGoogle Scholar
  63. 63.
    Luengo-oroz MA, Arranz A, Frean J. Crowdsourcing malaria parasite quantification: an online game for analyzing images of infected thick blood smears. J Med Internet Res. 2012;14:e167.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Obstetrics and GynecologyLehigh Valley Health NetworkAllentownUSA
  2. 2.Minimally Invasive Surgery ProgramLehigh Valley Health NetworkAllentownUSA
  3. 3.Division of Gynecologic OncologyUniversity of South FloridaTampaUSA

Personalised recommendations