Simulation in Ophthalmology

  • Ann Sofia Skou ThomsenEmail author
  • Lars Konge
  • Morten la Cour
Part of the Comprehensive Healthcare Simulation book series (CHS)


Ophthalmology as a surgical discipline has existed for many years and covers a wide range of different procedures, extending from operations of sight- and life-threatening diseases to cosmetic procedures. This chapter starts by examining the characteristics of ophthalmic surgery, where most procedures are microsurgical. For several surgical procedures in ophthalmology, learning curves are long, and there is a significant association between annual surgical volume and risk of postoperative adverse events even for experienced surgeons. Our analysis suggests that the ideal simulation-based curriculum consists of both basic and advanced microsurgical skills courses, including training of handling complications and, in the future, possibly mission rehearsal of individual patient cases. Looking into the current evidence and application of simulators in ophthalmology, we find that there are a wide variety of simulation models available, including animal models, virtual-reality simulators, and inanimate models. Our analysis is restricted by the limited amount of evidence in this area in ophthalmology. It seems that the biggest challenge is to implement instructional approaches that already have shown to be effective. However, we predict that the increase in available inanimate and virtual-reality training models will make it easier to add intermittent training to traditional wet-lab courses due to automated feedback mechanisms and take-home training models.


Ophthalmology Ophthalmic surgery/procedures Cataract surgery Ophthalmic simulation 


  1. 1.
    Grzybowski A, Ascaso FJ. Sushruta in 600 B.C. introduced extraocular expulsion of lens material. Acta Ophthalmol. 2014;92(2):194–7.CrossRefGoogle Scholar
  2. 2.
    Roy PN, Mehra KS, Deshpande PJ. Cataract surgery performed before 800 B.C. Br J Ophthalmol. 1975;59(3):171.CrossRefGoogle Scholar
  3. 3.
    Nielsen S. “En ihukommelsesskive” (Danish). Copenhagen Featur Artic. 1977;Google Scholar
  4. 4.
    Merril JR, Notaroberto NF, Laby DM, Rabinowitz AM, Piemme TE. The ophthalmic retrobulbar injection simulator (ORIS). An application of virtual reality to medical education. Proc Annu Symp Comput Appl Med Care. 1992:702–6.Google Scholar
  5. 5.
    Hunter I, Jones L, Sagar M, Lafontaine S, Hunter P. Ophthalmic microsurgical robot and associated virtual environment. Comput Biol Med. 1995;25(2):173–82.CrossRefGoogle Scholar
  6. 6.
    Sinclair M, Peifer J, Haleblian R, Luxenberg M, Green K, Hull D. Computer-simulated eye surgery. Ophthalmology. 1995;102(3):517–21.CrossRefGoogle Scholar
  7. 7.
    Rouland J, Dubois P, Chaillou C, Meseuree P, Karpf S, Godin S, et al. SOPHOCLE (Simulateur Ophthalmologique de PHOtoCoagulation LaSer): contribution de la réalité virtuelle. J Fr Ophthalmol. 1995;18(8/9):536–41.Google Scholar
  8. 8.
    Neumann PF, Sadler LL, Gieser J. Virtual reality vitrectomy simulator. In: Wells WM, Colchester A, Delp S, editors. Medical image computing and computer-assisted interventation — MICCAI’98. Berlin: Springer; 1998. p. 910–6.CrossRefGoogle Scholar
  9. 9.
    Benjamin L. 25th RCOphth Congress, President’s Session paper: 25 years of progress in surgical training. Eye (Lond). Nat Publ Group. 2014;28:1060–5.Google Scholar
  10. 10.
    Etzioni DA, Liu JH, Maggard MA, Ko CY. The aging population and its impact on the surgery workforce. Ann Surg. 2003;238(2):170–7.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Randleman JB, Wolfe JD, Woodward M, Lynn MJ, Cherwek H, Srivastava SK. The resident surgeon phacoemulsification learning curve. Arch Ophthalmol. 2007;125(9):1215–9.CrossRefGoogle Scholar
  12. 12.
    Taravella MJ, Davidson R, Erlanger M, Guiton G, Gregory D. Characterizing the learning curve in phacoemulsification. J Cataract Refract Surg. ASCRS and ESCRS; 2011;37(6):1069–75.Google Scholar
  13. 13.
    Tarbet KJ, Mamalis N, Theurer J, Jones BD, Olson RJ. Complications and results of phacoemulsification performed by residents. J Cataract Refract Surg American Society of Cataract and Refractive Surgery; 1995;21(6):661–5.Google Scholar
  14. 14.
    Bell CM, Hatch WV, Cernat G, Urbach DR. Surgeon volumes and selected patient outcomes in cataract surgery: a population-based analysis. Ophthalmology. 2007;114(3):405–10.CrossRefGoogle Scholar
  15. 15.
    Kim JY, Jo M-W, Brauner SC, Ferrufino-Ponce Z, Ali R, Cremers SL, et al. Increased intraocular pressure on the first postoperative day following resident-performed cataract surgery. Eye (Lond). 2011;25(7):929–36.CrossRefGoogle Scholar
  16. 16.
    Thomsen ASS, Subhi Y, Kiilgaard JF, la Cour M, Konge L. Update on simulation-based surgical training and assessment in ophthalmology. Ophthalmology. 2015;122(6):1111–30.CrossRefGoogle Scholar
  17. 17.
    Faber C, Scherfig E, Prause JU, Sørensen KE. Corneal thickness in pigs measured by ultrasound pachymetry in vivo. Scand J Lab Anim Sci. 2008;35(1):39–43.Google Scholar
  18. 18.
    Elsheikh A, Alhasso D, Rama P. Biomechanical properties of human and porcine corneas. Exp Eye Res. 2008;86(5):783–90.CrossRefGoogle Scholar
  19. 19.
    Figueira EC, Wang LW, Brown TM, Masselos K, Pandya VB, Dauber SL, et al. The grape: an appropriate model for continuous curvilinear capsulorhexis. J Cataract Refract Surg. 2008;34(9):1610–1.CrossRefGoogle Scholar
  20. 20.
    Abellán E, Calles-Vázquez MC, Cadarso L, Sánchez FM, Usón J. Design and validation of a simulator for training in continuous circular capsulotomy for phacoemulsification. Arch la Soc Española Oftalmol (English Ed). SEGO; 2013;88(10):387–92.Google Scholar
  21. 21.
    Agus M, Gobbetti E, Pintore G, Zanetti G, Zorcolo A. Real time simulation of Phaco-emulsification for cataract surgery training. In: Mendoza C, Navazo I, editors. Virtual reality interactions and physical simulation. Geneve: The Eurographics Association; 2006.Google Scholar
  22. 22.
    Laurell C-G, Söderberg P, Nordh L, Skarman E, Nordqvist P. Computer-simulated phacoemulsification. Ophthalmology. 2004;111(4):693–8.CrossRefGoogle Scholar
  23. 23.
    Webster R, Sassani J, Shenk R, Harris M, Gerber J, Benson A, et al. Simulating the continuous curvilinear Capsulorhexis procedure during cataract surgery on the EYESI system. In: Westwood JD, Haluck RS, Hoffman HM, Mogel GT, Phillips R, Robb RA, et al., editors. Medicine meets virtual reality 13. Amsterdam: IOS Press; 2005. p. 592–5.Google Scholar
  24. 24.
    Feudner EM, Engel C, Neuhann IM, Petermeier K, Bartz-Schmidt K-U, Szurman P. Virtual reality training improves wet-lab performance of capsulorhexis: results of a randomized, controlled study. Graefes Arch Clin Exp Ophthalmol. 2009;247(7):955–63.CrossRefGoogle Scholar
  25. 25.
    McCannel CA, Reed DC, Goldman DR. Ophthalmic surgery simulator training improves resident performance of capsulorhexis in the operating room. Ophthalmology. American Academy of Ophthalmology; 2013;120(12):2456–61.Google Scholar
  26. 26.
    Saleh GM, Lamparter J, Sullivan PM, O’Sullivan F, Hussain B, Athanasiadis I, et al. The international forum of ophthalmic simulation: developing a virtual reality training curriculum for ophthalmology. Br J Ophthalmol. 2013;97(6):789–92.CrossRefGoogle Scholar
  27. 27.
    Daly MK, Gonzalez E, Siracuse-Lee D, Legutko PA. Efficacy of surgical simulator training versus traditional wet-lab training on operating room performance of ophthalmology residents during the capsulorhexis in cataract surgery. J Cataract Refract Surg. ASCRS and ESCRS; 2013;39(11):1734–41.Google Scholar
  28. 28.
    Weiss M, Lauer SA, Fried MP, Uribe J, Sadoughi B. Endoscopic endonasal surgery simulator as a training tool for ophthalmology residents. Ophthal Plast Reconstr Surg. 2008;24(6):460–4.CrossRefGoogle Scholar
  29. 29.
    Peugnet F, Dubois P, Rouland J. Virtual reality versus conventional training in retinal photocoagulation: a first clinical assessment. Comput Aided Surg. 1998;26(3):20–6.CrossRefGoogle Scholar
  30. 30.
    Alwadani F, Morsi MS. PixEye virtual reality training has the potential of enhancing proficiency of laser Trabeculoplasty performed by medical students: a pilot study. Middle East Afr J Ophthalmol. 2012;19(1):120–2.Google Scholar
  31. 31.
    Thomsen ASS, Bach-Holm D, Kjærbo H, Højgaard-Olsen K, Subhi Y, Park YS, et al. Operating room performance improves after proficiency-based virtual reality cataract training. Ophthalmology. 2017;124:524–31.CrossRefGoogle Scholar
  32. 32.
    Lowry EA, Porco TC, Naseri A. Cost analysis of virtual-reality phacoemulsification simulation in ophthalmology training programs. J Cataract Refract Surg. ASCRS and ESCRS; 2013;39(10):1616–7.Google Scholar
  33. 33.
    Nandigam K, Soh J, Gensheimer WG, Ghazi A, Khalifa YM. Cost analysis of objective resident cataract surgery assessments. J Cataract Refract Surg. ASCRS and ESCRS; 2015;41(5):997–1003.Google Scholar
  34. 34.
    Spruit EN, Band GPH. Optimal training design for procedural motor skills: a review and application to laparoscopic surgery. Psychol Res. 2014;78(6):878–91.CrossRefGoogle Scholar
  35. 35.
    McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003-2009. Med Educ. 2010;44(1):50–63.CrossRefGoogle Scholar
  36. 36.
    Strandbygaard J, Bjerrum F, Maagaard M, Winkel P, Larsen CR, Ringsted C, et al. Instructor feedback versus no instructor feedback on performance in a laparoscopic virtual reality simulator. Ann Surg. 2013;257(5):839–44.CrossRefGoogle Scholar
  37. 37.
    Tolsgaard MG, Madsen ME, Ringsted C, Oxlund BS, Oldenburg A, Sorensen JL, et al. The effect of dyad versus individual simulation-based ultrasound training on skills transfer. Med Educ. 2015;49(3):286–95.CrossRefGoogle Scholar
  38. 38.
    Yule S, Parker SH, Wilkinson J, McKinley A, MacDonald J, Neill A, et al. Coaching non-technical skills improves surgical residents’ performance in a simulated operating room. J Surg Educ. Elsevier; 2015;72(6):1124–30.Google Scholar
  39. 39.
    Thomsen ASS, la Cour M, Paltved C, Lindorff-Larsen KG, Nielsen BU, Konge L, Nayahangan LJ. Consensus on procedures to include in a simulation-based curriculum in ophthalmology: a national Delphi study. Acta Ophthalmol. 2018;96(5):519–27.Google Scholar
  40. 40.
    Ezra DG, Aggarwal R, Michaelides M, Okhravi N, Verma S, Benjamin L, et al. Skills acquisition and assessment after a microsurgical skills course for ophthalmology residents. Ophthalmology. American Academy of Ophthalmology; 2009;116(2):257–62.Google Scholar
  41. 41.
    Fisher JB, Binenbaum G, Tapino P, Volpe NJ. Development and face and content validity of an eye surgical skills assessment test for ophthalmology residents. Ophthalmology. 2006;113(12):2364–70.CrossRefGoogle Scholar
  42. 42.
    Henderson BA, Kim JY, Golnik KC, Oetting TA, Lee AG, Volpe NJ, et al. Evaluation of the virtual mentor cataract training program. Ophthalmology. Elsevier Inc.; 2010;117(2):253–8.Google Scholar
  43. 43.
    Henderson BA, Grimes KJ, Fintelmann RE, Oetting TA. Stepwise approach to establishing an ophthalmology wet laboratory. J Cataract Refract Surg. 2009;35(6):1121–8.CrossRefGoogle Scholar
  44. 44.
    Turnbull AMJ, Lash SC. Confidence of ophthalmology specialist trainees in the management of posterior capsule rupture and vitreous loss. Eye (Lond). Nature Publishing Group; 2016;30(7):943–8.Google Scholar
  45. 45.
    Steeples LR, Hingorani M, Flanagan D, Kelly SP. Wrong intraocular lens events—what lessons have we learned? A review of incidents reported to the National Reporting and Learning System: 2010–2014 versus 2003–2010. Eye. 2016;44(April):1–7.Google Scholar
  46. 46.
    Saleh GM, Wawrzynski JR, Saha K, Smith P, Flanagan D, Hingorani M, et al. Feasibility of human factors immersive simulation training in ophthalmology. JAMA Ophthalmol. 2016;134(8):905.CrossRefGoogle Scholar
  47. 47.
    Grodin MH, Johnson TM, Acree JL, Glaser BM. Ophthalmic surgical training: a curriculum to enhance surgical simulation. Retina. 2008;28(10):1509–14.CrossRefGoogle Scholar
  48. 48.
    Greenrod EB, Jones MNA, Kaye S, Larkin DFP. Center and surgeon effect on outcomes of endothelial keratoplasty versus penetrating keratoplasty in the United Kingdom. Am J Ophthalmol. Elsevier Inc.; 2014;158(5):957–66.Google Scholar
  49. 49.
    Cook D, Hamstra S, Brydges R, Zendejas B, Szostek JH, Wang AT, et al. Comparative effectiveness of instructional design features in simulation-based education: systematic review and meta-analysis. Med Teach. 2013;35(1):e844–75.CrossRefGoogle Scholar
  50. 50.
    Lee AG, Greenlee E, Oetting TA, Beaver HA, Johnson AT, Boldt HC, et al. The Iowa ophthalmology wet laboratory curriculum for teaching and assessing cataract surgical competency. Ophthalmology. 2007;114(7):e21–6.CrossRefGoogle Scholar
  51. 51.
    Thomsen ASS, Kiilgaard JF, Kjaerbo H, la Cour M, Konge L. Simulation-based certification for cataract surgery. Acta Ophthalmol. 2015;93(5):416–21.CrossRefGoogle Scholar
  52. 52.
    Saleh GM, Voyazis Y, Hance J, Ratnasothy J, Darzi A. Evaluating surgical dexterity during corneal suturing. Arch Ophthalmol. 2006;124:1263–6.CrossRefGoogle Scholar
  53. 53.
    Taylor JB, Binenbaum G, Tapino P, Volpe NJ. Microsurgical lab testing is a reliable method for assessing ophthalmology residents’ surgical skills. Br J Ophthalmol. 2007;91(12):1691–4.CrossRefGoogle Scholar
  54. 54.
    Yeh S, Chan-Kai B, Lauer A. Basic training module for vitreoretinal surgery and the Casey eye institute vitrectomy indices tool for skills assessment. Clin Ophthalmol. 2011;5:1249–56.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Saleh GM, Gauba V, Mitra A, Litwin AS, Chung AKK, Benjamin L. Objective structured assessment of cataract surgical skill. Arch Ophthalmol. 2007;125(3):363–6.CrossRefGoogle Scholar
  56. 56.
    van der Vleuten C, Verhoeven B. In-training assessment developments in postgraduate education in Europe. ANZ J Surg. 2013;83(6):454–9.CrossRefGoogle Scholar
  57. 57.
    Spiteri AV, Aggarwal R, Kersey TL, Sira M, Benjamin L, Darzi AW, et al. Development of a virtual reality training curriculum for phacoemulsification surgery. Eye (Lond). Nat Publ Group; 2014;28(1):78–84.Google Scholar
  58. 58.
    Belyea DA, Brown SE, Rajjoub LZ. Influence of surgery simulator training on ophthalmology resident phacoemulsification performance. J Cataract Refract Surg. ASCRS and ESCRS; 2011;37(10):1756–61.Google Scholar
  59. 59.
    Pokroy R, Du E, Alzaga A, Khodadadeh S, Steen D, Bachynski B, et al. Impact of simulator training on resident cataract surgery. Graefes Arch Clin Exp Ophthalmol. 2013;251(3):777–81.CrossRefGoogle Scholar
  60. 60.
    Rogers GM, Oetting TA, Lee AG, Grignon C, Greenlee E, Johnson AT, et al. Impact of a structured surgical curriculum on ophthalmic resident cataract surgery complication rates. J Cataract Refract Surg. ASCRS and ESCRS; 2009;35(11):1956–60.Google Scholar
  61. 61.
    Grand MG, Boldrey E, Okun E. An experimental model for the evaluation of vitrectomy instruments. Ophthalmic Surg. 1979;10:59–63.PubMedGoogle Scholar
  62. 62.
    Rossi L, Sacerdoti D, Billi B, Lesnoni G, Orciuolo M, Rossi T, et al. Automated speech recognition in vitreo-retinal surgery. A project for a prototypal computer-based voice-controlled vitrectomy machine. Eur J Ophthalmol. 1996;6(4):454–9.CrossRefGoogle Scholar
  63. 63.
    Rahimy E, Wilson J, Tsao T-C, Schwartz S, Hubschman J-P. Robot-assisted intraocular surgery: development of the IRISS and feasibility studies in an animal model. Eye (Lond). Nature Publishing Group; 2013;27(8):972–8.Google Scholar
  64. 64.
    Ueta T, Yamaguchi Y, Shirakawa Y, Nakano T, Ideta R, Noda Y, et al. Robot-assisted vitreoretinal surgery. Development of a prototype and feasibility studies in an animal model. Ophthalmology. American Academy of Ophthalmology. 2009;116(8):1538–43.e2.Google Scholar
  65. 65.
    Cutler N, Balicki M, Finkelstein M, Wang J, Gehlbach P, McGready J, et al. Auditory force feedback substitution improves surgical precision during simulated ophthalmic surgery. Investig Ophthalmol Vis Sci. 2013;54(2):1316–24.CrossRefGoogle Scholar
  66. 66.
    Thomsen ASS, Kiilgaard JF, la Cour M, Brydges R, Konge L. Is there inter-procedural transfer of skills in intraocular surgery? A randomized controlled trial. Acta Ophthalmologica 2017;95(8):845–51.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ann Sofia Skou Thomsen
    • 1
    • 2
    Email author
  • Lars Konge
    • 2
  • Morten la Cour
    • 1
  1. 1.Department of OphthalmologyRigshospitaletGlostrupDenmark
  2. 2.Copenhagen Academy for Medical Education and Simulation, The Capital Region of DenmarkCopenhagenDenmark

Personalised recommendations