Skip to main content

Liquid Crystal Droplets

  • Chapter
  • First Online:
Topological Formations in Chiral Nematic Droplets

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Droplets of liquid crystals are a relatively well studied system because of the ease of their preparation and the richness of phenomena which can be observed in them. The simplest way of preparing them is to mix a small amount of a LC with a medium which will not dissolve the LC, for example an organic-molecule-based liquid crystal with a polar solvent such as water. Droplets can also be formed with phase separation as in polymer-dispersed LC [1], or with microfluidics which gives substantial control over their sizes [2, 3]. Droplets of various LC phases have been studied so far: smectic [4, 5], columnar [6] and blue phases [7,8,9], but by far the most frequently studied are nematic and cholesteric droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Doane, A. Golemme, J.L. West, J. Whitehead Jr., B.-G. Wu, Polymer dispersed liquid crystals for display application. Mol. Cryst. Liq. Cryst. 165, 511–532 (1988)

    Google Scholar 

  2. A. Utada et al., Monodisperse double emulsions generated from a microcapillary device. Science 308, 537–541 (2005)

    Article  ADS  Google Scholar 

  3. R.K. Shah et al., Designer emulsions using microfluidics. Mater. Today 11, 18–27 (2008)

    Article  Google Scholar 

  4. O. Lavrentovich, Topological defects in dispersed liquid crystals, or words and worlds around liquid crystal drops. Liq. Cryst. 24, 117–126 (1998)

    Article  Google Scholar 

  5. J. Jeong, M.W. Kim, Confinement-induced transition of topological defects in smectic liquid crystals: From a point to a line and pearls. Phys. Rev. Lett. 108, 207802 (2012)

    Article  ADS  Google Scholar 

  6. J. Jeong, Z.S. Davidson, P.J. Collings, T.C. Lubensky, A.G. Yodh, Chiral symmetry breaking and surface faceting in chromonic liquid crystal droplets with giant elastic anisotropy. Proc. Natl. Acad. Sci. USA 111, 1742–7 (2014)

    Article  ADS  Google Scholar 

  7. E. Kemiklioglu, L.-C. Chien, Polymer-encapsulated blue phase liquid crystal droplets. Appl. Phys. Express 7, 091701 (2014)

    Article  ADS  Google Scholar 

  8. J.A. Martínez-González et al., Blue-phase liquid crystal droplets. Proc. Natl. Acad. Sci. USA 112, 13195–13200 (2015)

    Article  ADS  Google Scholar 

  9. E. Bukusoglu, X. Wang, J.A. Martinez-Gonzalez, J.J. de Pablo, N.L. Abbott, Stimuli-responsive cubosomes formed from blue phase liquid crystals. Adv. Mater. 27, 6892–6898 (2015)

    Google Scholar 

  10. H. Yokoyama, S. Kobayashi, H. Kamei, Deformations of a planar nematic-isotropic interface in uniform and nonuniform electric fields. Mol. Cryst. Liq. Cryst. 129, 109–126 (1985)

    Article  Google Scholar 

  11. J. Yoshioka et al., Director/barycentric rotation in cholesteric droplets under temperature gradient. Soft Matter (2014)

    Google Scholar 

  12. J. Bernal, I. Fankuchen, X-ray and crystallographic studies of plant virus preparations: I. introduction and preparation of specimens ii. modes of aggregation of the virus particles. J. Gen. Physiol. 25, 111 (1941)

    Article  Google Scholar 

  13. L. Tortora, O.D. Lavrentovich, Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals. Proc. Natl. Acad. Sci. USA 108, 5163–5168 (2011)

    Article  ADS  Google Scholar 

  14. V. Jamali et al., Experimental realization of crossover in shape and director field of nematic tactoids. Phys. Rev. E 91, 042507 (2015)

    Article  ADS  Google Scholar 

  15. K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, C. Bahr, Solubilization of thermotropic liquid crystal compounds in aqueous surfactant solutions. Langmuir 28, 12426–12431 (2012)

    Article  Google Scholar 

  16. K. Peddireddy, P. Kumar, S. Thutupalli, S. Herminghaus, C. Bahr, Myelin structures formed by thermotropic smectic liquid crystals. Langmuir 29, 15682–15688 (2013)

    Article  Google Scholar 

  17. O. Lavrentovich, Y.A. Nastishin, Division of drops of a liquid-crystal in the case of a cholesteric-smectic-A phase-transition. J. Exp. Theor. Phys. Lett. 40, 1015–1019 (1984)

    Google Scholar 

  18. E. Pairam et al., Stable nematic droplets with handles. Proc. Natl. Acad. Sci. USA 110, 9295–9300 (2013)

    Article  ADS  Google Scholar 

  19. M. Tasinkevych, M.G. Campbell, I.I. Smalyukh, Splitting, linking, knotting, and solitonic escape of topological defects in nematic drops with handles. Proc. Natl. Acad. Sci. USA 111, 16268–16273 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. L. Mirantsev, E. de Oliveira, I. de Oliveira, M. Lyra, Defect structures in nematic liquid crystal shells of different shapes. Liq. Cryst. Rev. 4, 35–58 (2016)

    Article  Google Scholar 

  21. S. Kralj, R. Rosso, E.G. Virga, Curvature control of valence on nematic shells. Soft Matter 7, 670–683 (2011)

    Article  ADS  Google Scholar 

  22. T.-S. Nguyen, J. Geng, R.L. Selinger, J.V. Selinger, Nematic order on a deformable vesicle: theory and simulation. Soft Matter 9, 8314–8326 (2013)

    Article  ADS  Google Scholar 

  23. T. Lopez-Leon, V. Koning, K. Devaiah, V. Vitelli, A. Fernández-Nieves, Frustrated nematic order in spherical geometries. Nat. Phys. 7, 391–394 (2011)

    Article  Google Scholar 

  24. D. Seč et al., Defect trajectories in nematic shells: role of elastic anisotropy and thickness heterogeneity. Phys. Rev. E 86, 020705 (2012)

    Article  ADS  Google Scholar 

  25. G. Volovik, O. Lavrentovich, Topological dynamics of defects: boojums in nematic drops. Zh. Eksp. Teor. Fiz. 85, 1997–2010 (1983)

    Google Scholar 

  26. J.K. Gupta, J.S. Zimmerman, J.J. de Pablo, F. Caruso, N.L. Abbott, Characterization of adsorbate-induced ordering transitions of liquid crystals within monodisperse droplets. Langmuir 25, 9016–9024 (2009)

    Article  Google Scholar 

  27. S. Sivakumar, K.L. Wark, J.K. Gupta, N.L. Abbott, F. Caruso, Liquid crystal emulsions as the basis of biological sensors for the optical detection of bacteria and viruses. Adv. Funct. Mater. 19, 2260–2265 (2009)

    Article  Google Scholar 

  28. M. Humar, I. Muševič, Surfactant sensing based on whispering-gallery-mode lasing in liquid-crystal microdroplets. Opt. Express 19, 19836–19844 (2011)

    Article  ADS  Google Scholar 

  29. I.-H. Lin et al., Endotoxin-induced structural transformations in liquid crystalline droplets. Science 332, 1297–1300 (2011)

    Article  ADS  Google Scholar 

  30. P. Poulin, H. Stark, T. Lubensky, D. Weitz, Novel colloidal interactions in anisotropic fluids. Science 275, 1770–1773 (1997)

    Article  Google Scholar 

  31. P. Poulin, D. Weitz, Inverted and multiple nematic emulsions. Phys. Rev. E 57, 626–637 (1998)

    Article  ADS  Google Scholar 

  32. J. Ding, Y. Yang, Birefringence patterns of nematic droplets. Jpn. J. Appl. Phys. 31, 2837 (1992)

    Article  ADS  Google Scholar 

  33. P.S. Drzaic, A case of mistaken identity: spontaneous formation of twisted bipolar droplets from achiral nematic materials. Liq. Cryst. 26, 623–627 (1999)

    Article  Google Scholar 

  34. D. Seč, T. Porenta, M. Ravnik, S. Žumer, Geometrical frustration of chiral ordering in cholesteric droplets. Soft Matter 8, 11982–11988 (2012). https://dx.doi.org/10.1039/C2SM27048

  35. J. Yoshioka, F. Ito, Y. Tabe, Stability of double twisted structure in spherical cholesteric droplets. Soft Matter (2016)

    Google Scholar 

  36. G. Posnjak, S. Čopar, I. Muševič, Points, skyrmions and torons in chiral nematic droplets. Sci. Rep. 6, 26361 (2016)

    Google Scholar 

  37. U. Mur et al., Ray optics simulations of polarised microscopy textures in chiral nematic droplets. Liq. Cryst. 44, 679–687 (2017)

    Google Scholar 

  38. S. Candau, P. Le Roy, F. Debeauvais, Magnetic field effects in nematic and cholesteric droplets suspended in a isotropic liquid. Mol. Cryst. Liq. Cryst. 23, 283–297 (1973)

    Google Scholar 

  39. M. Kurik, O. Lavrentovich, Negative-positive monopole transitions in cholesteric liquid crystals. J. Exp. Theor. Phys. Lett. 35, 444–447 (1982)

    Google Scholar 

  40. M. Kurik, O. Lavrentovich, Topological defects of cholesteric liquid crystals for volumes with spherical shape. Mol. Cryst. Liq. Cryst. 72, 239–246 (1982)

    Article  Google Scholar 

  41. Y. Bouligand, F. Livolant, The organization of cholesteric spherulites. J. Phys. 45, 1899–1923 (1984)

    Article  Google Scholar 

  42. J. Bezić, S. Žumer, Structures of the cholesteric liquid crystal droplets with parallel surface anchoring. Liq. Cryst. 11, 593–619 (1992)

    Article  Google Scholar 

  43. F. Xu, P. Crooker, Chiral nematic droplets with parallel surface anchoring. Phys. Rev. E 56, 6853 (1997)

    Article  ADS  Google Scholar 

  44. D. Seč, S. Žumer, Topological zoo of free-standing knots in confined chiral nematic fluids. Nat. Commun. 5, 3057 (2014). https://www.nature.com/ncomms/

  45. T. Orlova, S.J. Asshoff, T. Yamaguchi, N. Katsonis, E. Brasselet, Creation and manipulation of topological states in chiral nematic microspheres. Nat. Commun. 6, 7603 (2015)

    Article  ADS  Google Scholar 

  46. Y. Zhou et al., Structural transitions in cholesteric liquid crystal droplets. ACS Nano 10, 6484–6490 (2016)

    Article  Google Scholar 

  47. H.-S. Kitzerow, P. Crooker, Electric field effects on the droplet structure in polymer dispersed cholesteric liquid crystals. Liq. Cryst. 13, 31–43 (1993)

    Article  Google Scholar 

  48. J. Bajc, J. Bezić, S. Žumer, Chiral nematic droplets with tangential anchoring and negative dielectric anisotropy in an electric field. Phys. Rev. E 51, 2176 (1995)

    Article  ADS  Google Scholar 

  49. J. Bajc, S. Zumer, Structural transition in chiral nematic liquid crystal droplets in an electric field. Phys. Rev. E 55, 2925 (1997)

    Article  ADS  Google Scholar 

  50. Y. Geng et al., Liquid crystal necklaces: cholesteric drops threaded by thin cellulose fibres. Soft Matter 9, 7928–7933 (2013)

    Article  ADS  Google Scholar 

  51. M. Rahimi et al., Nanoparticle self-assembly at the interface of liquid crystal droplets. Proc. Natl. Acad. Sci. USA 112, 5297–5302 (2015)

    Article  ADS  Google Scholar 

  52. Y. Li et al., Colloidal cholesteric liquid crystal in spherical confinement. Nat. Commun. 7 (2016)

    Google Scholar 

  53. Y. Li et al., Periodic assembly of nanoparticle arrays in disclinations of cholesteric liquid crystals. Proc. Natl. Acad. Sci. USA 114, 2137–2142 (2017)

    Article  ADS  Google Scholar 

  54. C. Smith, D. Sabatino, T. Praisner, Temperature sensing with thermochromic liquid crystals. Exp. Fluids 30, 190–201 (2001)

    Article  Google Scholar 

  55. I. Sage, Thermochromic liquid crystals. Liq. Cryst. 38, 1551–1561 (2011)

    Article  Google Scholar 

  56. D.-K. Yang, L.-C. Chien, J. Doane, Cholesteric liquid crystal/polymer dispersion for haze-free light shutters. Appl. Phys. Lett. 60, 3102–3104 (1992)

    Article  ADS  Google Scholar 

  57. D.J. Gardiner et al., Paintable band-edge liquid crystal lasers. Opt. Express 19, 2432–2439 (2011)

    Article  ADS  Google Scholar 

  58. P. Hands et al., Band-edge and random lasing in paintable liquid crystal emulsions. Appl. Phys. Lett. 98, 141102 (2011)

    Article  ADS  Google Scholar 

  59. M. Humar, I. Muševič, 3D microlasers from self-assembled cholesteric liquid-crystal microdroplets. Opt. Express 18, 26995–27003 (2010)

    Article  ADS  Google Scholar 

  60. M. Humar, Liquid-crystal-droplet optical microcavities. Liq. Cryst. 43, 1937–1950 (2016)

    Article  Google Scholar 

  61. S.J. Asshoff et al., Superstructures of chiral nematic microspheres as all-optical switchable distributors of light. Sci. Rep.5 (2015)

    Google Scholar 

  62. Y. Geng et al., High-fidelity spherical cholesteric liquid crystal Bragg reflectors generating unclonable patterns for secure authentication. Sci. Rep. 6 (2016)

    Google Scholar 

  63. A.F. Ranada, J.L. Trueba, Ball lightning an electromagnetic knot? Nature 383, 32–32 (1996)

    Article  ADS  Google Scholar 

  64. L. Faddeev, A.J. Niemi, Stable knot-like structures in classical field-theory. Nature 387, 58–61 (1997)

    Article  ADS  Google Scholar 

  65. W.T. Irvine, D. Bouwmeester, Linked and knotted beams of light. Nat. Phys. 4, 716–720 (2008)

    Article  Google Scholar 

  66. M.R. Dennis, R.P. King, B. Jack, K. O’Holleran, M.J. Padgett, Isolated optical vortex knots. Nat. Phys. 6, 118–121 (2010)

    Article  Google Scholar 

  67. H. Kedia, I. Bialynicki-Birula, D. Peralta-Salas, W.T. Irvine, Tying knots in light fields. Phys. Rev. Lett. 111, 150404 (2013)

    Article  ADS  Google Scholar 

  68. D. Kleckner, W.T. Irvine, Creation and dynamics of knotted vortices. Nat. Phys. 9, 253–258 (2013)

    Article  Google Scholar 

  69. U. Tkalec, M. Ravnik, S. Copar, S. žumer, I. & Muševič, Reconfigurable knots and links in chiral nematic colloids. Science 333, 62–65 (2011)

    Google Scholar 

  70. T. Machon, G.P. Alexander, Knots and nonorientable surfaces in chiral nematics. Proc. Natl. Acad. Sci. USA 110, 14174–14179 (2013)

    Article  ADS  Google Scholar 

  71. A. Martinez et al., Mutually tangled colloidal knots and induced defect loops in nematic fields. Nat. Mater. 13, 258–263 (2014)

    Article  ADS  Google Scholar 

  72. D.S. Hall et al., Tying quantum knots. Nat. Phys. 12, 478–483 (2016)

    Article  Google Scholar 

  73. C. Ruslim, K. Ichimura, Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants. J. Phys. Chem. B 104, 6529–6535 (2000)

    Article  Google Scholar 

  74. J.-K. Guo, J.-K. Song, Three-dimensional reconstruction of topological deformation in chiral nematic microspheres using fluorescence confocal polarizing microscopy. Opt. Express 24, 7381–7386 (2016)

    Article  ADS  Google Scholar 

  75. S.D. Kim, J.-K. Guo, J.-K. Song, Suspended, one-side anchored, or double-side anchored nematic droplets in an isotropic medium. Liq. Cryst. 1–7 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Posnjak .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Posnjak, G. (2018). Liquid Crystal Droplets. In: Topological Formations in Chiral Nematic Droplets. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-98261-8_3

Download citation

Publish with us

Policies and ethics