Wide-Field fHSI with a Linescan SRDA

  • Anna Siri Luthman
Part of the Springer Theses book series (Springer Theses)


Clinical spectral imaging has the potential to improve diagnosis and guide treatment. Tissue contrast may be extracted from the reflectance, absorption and fluorescence spectra. Spectral imaging may, for example, be used to extract a multiplexed signal from endogenous tissue chromophores or from exogenously administered fluorescent contrast agents, via separation of their absorption and/or emission spectra.


  1. 1.
    R.R. Zhang et al., Beyond the margins: real-time detection of cancer using targeted fluorophores. Nat. Rev. Clin. Oncol. 14, 347–364 (2017)CrossRefGoogle Scholar
  2. 2.
    A.L. Vahrmeijer, M. Hutteman, J.R. van de Vorst, C.J.H. van de Velde, J.V. Frangioni, Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013)CrossRefGoogle Scholar
  3. 3.
    M.B. Strum, T.D. Wang, Emerging optical methods for surveillance of Barrett’s oesophagus. Gut 64, 1816–1823 (2015)CrossRefGoogle Scholar
  4. 4.
    J. Hoon Lee, T.D. Wang, Molecular endoscopy for targeted imaging in the digestive tract. Lancet. Gastroenterol. Hepatol. 1(2), 147–155 (2016)CrossRefGoogle Scholar
  5. 5.
    A.S. Luthman, S. Dumitru, I. Quiros-Gonzalez, J. Joseph, S.E. Bohndiek, Fluorescence hyperspectral imaging (fHSI) using a spectrally resolved detector array. J. Biophotonics 10(6–7), 840–853 (2017)CrossRefGoogle Scholar
  6. 6.
    G. Lu, B. Fei, Medical hyperspectral imaging: a review. J. Biomed. Opt. 19(1), 010901 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S. Keereweer et al., Optical image-guided cancer surgery: challenges and limitations. Clin. Cancer Res. 19(14), 3745–3754 (2013)CrossRefGoogle Scholar
  8. 8.
    M.S. Chin et al., Hyperspectral imaging for early detection of oxygenation and perfusion changes in irradiated skin. J. Biomed. Opt. 17(2), 026010 (2012)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    N.T. Clancy et al., Intraoperative measurement of bowel oxygen saturation using a multispectral imaging laparoscope. Biomed. Opt. Express 6(10), 4179–4190 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Vaesfi et al., Separating melanin from hemodynamics in nevi using multimodal hyperspectral dermoscopy and spatial frequency domain spectroscopy. J. Biomed. Opt. 21(11), 114001 (2016)ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Calin et al., Hyperspectral imaging-based wound analysis using mixture-tuned matched filtering classification method. J. Biomed. Opt. 20(4), 046004 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    W. Ren, Q. Gan, Q. Wu, S. Zhang, R. Xu, Quasi-simultaneous multimodal imaging of cutaneous tissue oxygenation and perfusion. J. Biomed. Opt. 20(12), 121307 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    W.R. Johnson, D.W. Wilson, W. Fink, M. Humayun, G. Bearman, Snapshot hyperspectral imaging in opthalmology. J. Biomed. Opt. 12(1), 014036 (2014)CrossRefGoogle Scholar
  14. 14.
    H. Li et al., Snapshot hyperspectral retinal imaging using compact spectral resolving detector array. J. Biophotonics 10(6–7), 830–839 (2016)Google Scholar
  15. 15.
    L.E. MacKenzie, T.R. Choudhary, A.I. McNaught, A.R. Harvey, In vivo oxiometry of human bulbar conjunctival and episcleral microvasculature using snapshot multispectral imaging. Exp. Eye Res. 149, 48–58 (2016)CrossRefGoogle Scholar
  16. 16.
    T.H. Tate et al., Multispectral fluorescence imaging of human ovarian and fallopian tube tissue for early-stage caner detection. J. Biomed. Opt. 21(5), 014036 (2016)CrossRefGoogle Scholar
  17. 17.
    G. Lu et al., Spectral-spatial classification for noninvasive cancer detection using hyperspectral imaging. J. Biomed. Opt. 19(10), 016004 (2014)Google Scholar
  18. 18.
    Z. Han, A. Zhang, X. Wang, M.D. Wang, T. Xie, In vivo use of hyperspectral imaging to develop a noncontact endoscopic diagnosis support system for malignant colorectal tumors. J. Biomed. Opt. 21(1), 016001 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    S.V. Panasyuk et al., Medical hyperspectral imaging to facilitate residual tumor identification during surgery. Cancer Biol. Ther. 6(3), 439–446 (2007)CrossRefGoogle Scholar
  20. 20.
    J. Pichette et al., Intraoperative video-rate hemodynamic response assessment in human cortex using snapshot hyperspectral optical imaging. Neurophotonics 3(4), 045003 (2016)CrossRefGoogle Scholar
  21. 21.
    Q. Li et al., Review of spectral imaging technology in biomedical engineering: achievements and challenges. J. Biomed. Opt. 18(10), 100901 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    G. Hong, A.L. Antaris, H. Dai, Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1(0010), 1–22 (2017)Google Scholar
  23. 23.
    S.L. Jacques, Optical properties of biological tissues: a review. Phys. Med. Biol. 58, 5007–5008 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    F. Leblond, S.C. Davis, P.A. Valdés, B.W. Pouge, Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J. Photochem. Photobiol. B 98, 77–94 (2009)CrossRefGoogle Scholar
  25. 25.
    S.H. Yun, S.J.J. Kwok, Light in diagnosis, therapy and surgery. Nat. Biomed. Eng. 1(0008) (2017)Google Scholar
  26. 26.
    H. Hyun et al., Structure-inherent targeting of near-infrared fluorophores for parathyroid and thyroid gland imaging hoon. Nat. Med. 21(2), 192–197 (2015)CrossRefGoogle Scholar
  27. 27.
    J.P. Miller, D. Maji, J. Lam, B.J. Tromberg, S. Achilfu, Noninvasive depth estimation using tissue optical properties and a dual-wavelength fluorescent molecular probe in vivo. Biomed. Opt. Express 8(6), 3095–3109 (2017)Google Scholar
  28. 28.
    M. Lakadamyali, Super-resolution microscopy: going live and going fast. ChemPhysChem 15(4), 630–636 (2014)CrossRefGoogle Scholar
  29. 29.
    T. Barrett et al., In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies. Clin. Cancer Res. 13(22), 6639–6648 (2007)CrossRefGoogle Scholar
  30. 30.
    J.R. Mansfield, Multispectral imaging: a review of its technical aspects ad applications in anatomic pathology. Vet. Pathol. 51(1), 185–210 (2013)CrossRefGoogle Scholar
  31. 31.
    In-vivo multispectral fluorescent imaging. Technical report, Bruker BioSpin, November 2016Google Scholar
  32. 32.
    Product Note, IVIS Spectrum, advanced preclinical optical imaging. Technical report, PerkinElmer, Inc., 2016Google Scholar
  33. 33.
    Product Note, Solaris, advanced preclinical optical imaging. Technical report, PerkinElmer, Inc., 2016Google Scholar
  34. 34.
    Product Note, Pearl Trilogy imaging system (Technical report, Li-Cor, 2017)Google Scholar
  35. 35.
    B. Zhu, E.M. Sevick-Muraca, A review of performance of near-infrared fluorescence imaging devices used in clinical studies. Br. J. Radiol. 88, 1–26 (2014)Google Scholar
  36. 36.
    J.M. Bioucas-Dias et al., Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J-STARS 5(2), 354–378 (2012)Google Scholar
  37. 37.
    W.K. Ma et al., A signal processing perspective on hyperspectral unmixing. IEEE Signal Process. 67, 67–81 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    N. Keshava, A survey of spectral unmixing algorithms. Linc. Lab. J. 14(1), 55–78 (2003)Google Scholar
  39. 39.
    F. Cutrale, Hyperspectral phasor analysis enables multiplexed 5D in vivo imaging. Nat. Methods 14(2), 149–155 (2017)CrossRefGoogle Scholar
  40. 40.
    R. Heylen, P. Gader, M. Parente, A review of nonlinear hyperspectral unmixing methods. IEEE JSTAR 7(6), 55–78 (2014)Google Scholar
  41. 41.
    L. Gao, R.T. Smith, Optical hyperspectral imaging in microscopy and spectroscopy - a review of data acquisition. J. Biophotonics 8(6), 441–456 (2015)CrossRefGoogle Scholar
  42. 42.
    S. Matteoli, M. Diani, J. Theiler, An overview of background modeling for detection of targets and anomalies in hyperspectral remotely sensed imagery. IEEE JSTAR 7(6), 2317–2336 (2014)ADSGoogle Scholar
  43. 43.
    J.C. Harsanyi, C.I. Chang, Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach. IEEE Trans. Geosci. Remote Sens. 32(4), 779–785 (1994)ADSCrossRefGoogle Scholar
  44. 44.
    SPECTIR, SPECTIR: glossary of terms (2017), Accessed 29 June 2017
  45. 45.
    L. Frey, L. Masarotto, M. Armand, M.L. Charles, O. Lartigue, Multispectral interference filter arrays with compensation of angular dependence or extended spectral range. Opt. Express 23(9), 11799–11812 (2015)ADSCrossRefGoogle Scholar
  46. 46.
    R. Levenson, J. Beechem, G. McNamara, Spectral imaging in preclinical research and clinical pathology. Anal. Cell. Pathol. 35(5–6), 339–361 (2012)CrossRefGoogle Scholar
  47. 47.
    X. Song et al., Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl. Opt. 43(5), 1053–1062 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    T. Sawyer, S.E. Bohndiek, Towards a simulation framework to maximize the resolution of biomedical hyperspectral imaging. Proc. SPIE Int. Soc. Opt. Eng. 10412(104120C) (2017)Google Scholar
  49. 49.
    Occupation Health Services, University of Cambridge. Safe Use of Lasers University of Cambridge, HSD013R (rev 5) (2016)Google Scholar
  50. 50.
    T. Sawyer, A.S. Luthman, S.E. Bohndiek, Evaluation of illumination system uniformity for wide-field biomedical hyperspectral imaging. J. Opt. 19(4), 045301 (2017)ADSCrossRefGoogle Scholar
  51. 51.
    A. Lambrechts et al., A CMOS-compatible, integrated approach to hyper- and multispectral imaging, in 2014 IEEE International Electron Devices Meeting, IEDM14 (2014), pp. 261–264Google Scholar
  52. 52.
    P.A. Valdes et al., Quantitative, spectrally-resolved intraoperative fluorescence imaging. Sci. Rep. 2(798) (2012)Google Scholar
  53. 53.
    M. Jermyn et al., Macroscopic-imaging technique for subsurface quantification of near-infrared markers during surgery. J. Biomed. Opt. 20(3), 036014 (2015)Google Scholar
  54. 54.
    S. Tzoumas, N.C. Deliolanis, S. Morscher, V. Ntziachristos, Unmixing molecular agents from absorbing tissue in multispectral optoacoustic tomography. IEEE Trans. Med. Imaging 33(1), 48–60 (2014)CrossRefGoogle Scholar
  55. 55.
    B.P. Joshi et al., Multimodal endoscope can quantify wide-field fluorescence detection of Barrett’s neoplasia. Endoscopy 48(2), A1–A13 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CambridgeCambridgeUK

Personalised recommendations