Advertisement

Biomarkers in Precision Medicine: The Era of Omics

  • Jean-Jacques Vignaux
  • Arthur AndréEmail author
Chapter
Part of the Health Informatics book series (HI)

Abstract

Since the advent of genomics, the suffix “-omics” has been added to the names of many fields to refer to large-scale studies to identify biomarkers. The -omics data analysis would not only allow the identification of new biomarkers representative of pathologies but also propose new therapeutic targets for the development of more effective drugs. We go trough the recent studies describing genomics, proteomics, transcriptomics, biomarkers of circadian rythm and biomerkers of inflammation.

Keywords

Biomarkers Genomics Proteomics Transcriptomics Database 

References

  1. 1.
    Markman BT. Biomarkers for go/no go decisions. In: Lenz H-J, editor. Biomarkers in oncology – prediction and prognosis. New York: Springer; 2013.Google Scholar
  2. 2.
    Johnson DS, et al. Genome-wide mapping of in vivo protein-DNA interactions. Science. 2007;316(5830):1497–502.PubMedCrossRefGoogle Scholar
  3. 3.
    Online Mendelian Inheritance in Man (OMIM). 2018. Copyright® 1966–2018 Johns Hopkins University.Google Scholar
  4. 4.
    Guigo R, et al. Prediction of gene structure. J Mol Biol. 1992;226(1):141–57.PubMedCrossRefGoogle Scholar
  5. 5.
    Davies KE, et al. Linkage analysis of two cloned DNA sequences flanking the Duchenne muscular dystrophy locus on the short arm of the human X chromosome. Nucleic Acids Res. 1983;11(8):2303–12.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Donis-Keller H, et al. A genetic linkage map of the human genome. Cell. 1987;51(2):319–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Catalog of published genome-wide association studies. 2018. Available from: https://www.genome.gov/26525384/catalog-of-published-genomewide-association-studies/.
  8. 8.
    Hebbring SJ. The challenges, advantages and future of phenome-wide association studies. Immunology. 2014;141(2):157–65.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    SNOMED CT. http://www.snomed.com. 2018.
  10. 10.
    Ontobee. 2018. Available from: http://www.ontobee.org/.
  11. 11.
    Human phenotype ontology. 2018. Available from: http://human-phenotype-ontology.github.io.
  12. 12.
    Diseases database ver 2.0; Medical lists and links diseases database. 2018. Available from: http://www.diseasesdatabase.com/.
  13. 13.
    HIPAA administrative simplification. American Medical Association. 2018.Google Scholar
  14. 14.
    Pitteri S, Hanash S. A systems approach to the proteomic identification of novel cancer biomarkers – IOS Press. Dis Mark. 2010;28(4).PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Hathout Y, et al. Clinical utility of serum biomarkers in Duchenne muscular dystrophy. Clin Proteomics. 2016;13:9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Pellegrini P, et al. Gender-specific cytokine pathways, targets, and biomarkers for the switch from health to adenoma and colorectal cancer. Clin Dev Immunol. 2011;2011:819724.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Huang Y, Zhu H. Protein array-based approaches for biomarker discovery in cancer. Genom Proteom Bioinform. 2017;15(2):73–81.CrossRefGoogle Scholar
  18. 18.
    Tu S, et al. Protein microarrays for studies of drug mechanisms and biomarker discovery in the era of systems biology. Curr Pharm Des. 2014;20(1):49–55.PubMedCrossRefGoogle Scholar
  19. 19.
    Yan Q. Translational bioinformatics and systems biology methods for personalized medicine. 1st Ed. Published: 20th April 2017 Academic Press eBook. ISBN:9780128043882.Google Scholar
  20. 20.
    Chandra H, Reddy PJ, Srivastava S. Protein microarrays and novel detection platforms. Expert Rev Proteomics. 2011;8(1):61–79.PubMedCrossRefGoogle Scholar
  21. 21.
    Perez-Riverol Y, et al. Making proteomics data accessible and reusable: current state of proteomics databases and repositories. Proteomics. 2015;15(5–6):930–49.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Koenig T, et al. Robust prediction of the MASCOT score for an improved quality assessment in mass spectrometric proteomics. J Proteome Res. 2008;7(9):3708–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Diament BJ, Noble WS. Faster SEQUEST searching for peptide identification from tandem mass spectra. 2011.Google Scholar
  24. 24.
    Ma B, et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom. 2003;17(20):2337–42.CrossRefGoogle Scholar
  25. 25.
    Listgarten J, Emili A. Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics. 2005;4(4):419–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Riffle M, Eng JK. Proteomics data repositories. Proteomics. 2009;9(20):4653–63.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pescador N, et al. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One. 2013;8(10):e77251.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73.CrossRefGoogle Scholar
  29. 29.
    Andres-Leon E, et al. miRGate: a curated database of human, mouse and rat miRNA-mRNA targets. Database (Oxford). 2015;2015:bav035.CrossRefGoogle Scholar
  30. 30.
    Chou CH, et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res. 2016;44(D1):D239–47.PubMedCrossRefGoogle Scholar
  31. 31.
    Wong N, Wang X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res. 2015;43(Database issue):D146–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Roberts TC, et al. Extracellular microRNAs are dynamic non-vesicular biomarkers of muscle turnover. Nucleic Acids Res. 2013;41:9500–13.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jones K, et al. Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma. Clin Cancer Res. 2014;20(1):253–64.PubMedCrossRefGoogle Scholar
  34. 34.
    Thulin P, et al. Keratin-18 and microRNA-122 complement alanine aminotransferase as novel safety biomarkers for drug-induced liver injury in two human cohorts. Liver Int. 2014;34(3):367–78.PubMedCrossRefGoogle Scholar
  35. 35.
    Lin J, et al. Novel specific microRNA biomarkers in idiopathic inflammatory bowel disease unrelated to disease activity. Mod Pathol. 2014;27(4):602–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang JL, et al. Candidate microRNA biomarkers in human gastric cancer: a systematic review and validation study. PLoS One. 2013;8(9):e73683.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Chen Y, Zhang L, Hao Q. Candidate microRNA biomarkers in human epithelial ovarian cancer: systematic review profiling studies and experimental validation. Cancer Cell Int. 2013;13:86.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Beta M, et al. Identification and insilico analysis of retinoblastoma serum microRNA profile and gene targets towards prediction of novel serum biomarkers. Bioinform Biol Insights. 2013;7:21–34.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Abdalla MA, Haj-Ahmad Y. Promising candidate urinary microRNA biomarkers for the early detection of hepatocellular carcinoma among high-risk hepatitis C virus Egyptian patients. J Cancer. 2012;3:19–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Foss KM, et al. miR-1254 and miR-574-5p: serum-based microRNA biomarkers for early-stage non-small cell lung cancer. J Thorac Oncol. 2011;6(3):482–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Long Q, et al. Protein-coding and microRNA biomarkers of recurrence of prostate cancer following radical prostatectomy. Am J Pathol. 2011;179(1):46–54.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    BSM. Biomarkers and systems medicine. 2017. Available from: http://pharmtao.com/health/category/systems-medicine/biomarkers-systems-medicine.
  43. 43.
    Milhiet V, et al. Circadian biomarkers, circadian genes and bipolar disorders. J Physiol Paris. 2011;105(4–6):183–9.PubMedCrossRefGoogle Scholar
  44. 44.
    Yi C, et al. The circadian gene NPAS2 is a novel prognostic biomarker for breast cancer. Breast Cancer Res Treat. 2010;120(3):663–9.PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu Y, et al. Period3 structural variation: a circadian biomarker associated with breast cancer in young women. Cancer Epidemiol Biomark Prev. 2005;14(1):268–70.Google Scholar
  46. 46.
    Scully CG, et al. Skin surface temperature rhythms as potential circadian biomarkers for personalized chronotherapeutics in cancer patients. Interface Focus. 2011;1:48–60.PubMedCrossRefGoogle Scholar
  47. 47.
    Corbalan-Tutau D, et al. Daily profile in two circadian markers “melatonin and cortisol” and associations with metabolic syndrome components. Physiol Behav. 2014;123:231–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Wipfler P, et al. Circadian rhythmicity of inflammatory serum parameters: a neglected issue in the search of biomarkers in multiple sclerosis. J Neurol. 2013;260(1):221–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Rattan S. Hormones in ageing and longevity. Springer; 2018.Google Scholar
  50. 50.
    Sherwin E, et al. May the force be with you: the light and dark sides of the microbiota-gut-brain axis in neuropsychiatry. CNS Drugs. 2016;30(11):1019–41.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Sandhu KV, et al. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–44.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.iTechCare Medical Data Research, OsteopathParisFrance
  2. 2.Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de ParisParisFrance
  3. 3.Sorbonne UniversitéParisFrance

Personalised recommendations