Advertisement

Lamina Cribrosa

  • Lina SiaudvytyteEmail author
Chapter

Abstract

The lamina cribrosa, a multi-layered sieve-like structure in the optic nerve head, has been proposed as a primary site of axonal damage in glaucoma. The lamina cribrosa provides structural and functional support to the retinal ganglion cells axons as they pass from the relatively high-pressure intraocular space to a low-pressure region in the retrobulbar space.

References

  1. 1.
    Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol (Chicago, IL: 1960). 1981;99(4):635–49.CrossRefGoogle Scholar
  2. 2.
    Burgoyne CF, Downs JC, Bellezza AJ, Suh J-KF, Hart RT. The optic nerve head as a biomechanical structure: a new paradigm for understanding the role of IOP-related stress and strain in the pathophysiology of glaucomatous optic nerve head damage. Prog Retin Eye Res. 2005;24(1):39–73.CrossRefGoogle Scholar
  3. 3.
    Dai C, Khaw PT, Yin ZQ, Li D, Raisman G, Li Y. Structural basis of glaucoma: the fortified astrocytes of the optic nerve head are the target of raised intraocular pressure. Glia. 2012;60(1):13–28.CrossRefGoogle Scholar
  4. 4.
    Downs JC, Roberts MD, Burgoyne CF. Mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci. 2008;85(6):425–35.CrossRefGoogle Scholar
  5. 5.
    Yan DB, Coloma FM, Metheetrairut A, Trope GE, Heathcote JG, Ethier CR. Deformation of the lamina cribrosa by elevated intraocular pressure. Br J Ophthalmol. 1994;78(8):643–8.CrossRefGoogle Scholar
  6. 6.
    Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol (Chicago, IL: 1960). 1981;99(1):137–43.CrossRefGoogle Scholar
  7. 7.
    Yang H, Downs JC, Bellezza A, Thompson H, Burgoyne CF. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: prelaminar neural tissues and cupping. Investig Ophthalmol Vis Sci. 2007;48(11):5068–84.CrossRefGoogle Scholar
  8. 8.
    Yang H, Williams G, Downs JC, Sigal IA, Roberts MD, Thompson H, et al. Posterior (outward) migration of the lamina cribrosa and early cupping in monkey experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52(10):7109–21.CrossRefGoogle Scholar
  9. 9.
    Roberts MD, Grau V, Grimm J, Reynaud J, Bellezza AJ, Burgoyne CF, et al. Remodeling of the connective tissue microarchitecture of the lamina cribrosa in early experimental glaucoma. Invest Ophthalmol Vis Sci. 2009;50(2):681–90.CrossRefGoogle Scholar
  10. 10.
    Jonas JB, Berenshtein E, Holbach L. Anatomic relationship between Lamina Cribrosa, intraocular space, and cerebrospinal fluid space. Investig Ophthalmol Vis Sci. 2003;44(12):5189–95.CrossRefGoogle Scholar
  11. 11.
    Quigley HA, Hohman RM, Addicks EM, Massof RW, Green WR. Morphologic changes in the lamina cribrosa correlated with neural loss in open-angle glaucoma. Am J Ophthalmol. 1983;95(5):673–91.CrossRefGoogle Scholar
  12. 12.
    Ren R, Wang N, Li B, Li L, Gao F, Xu X, et al. Lamina cribrosa and peripapillary sclera histomorphometry in normal and advanced glaucomatous Chinese eyes with various axial length. Invest Ophthalmol Vis Sci. 2009;50(5):2175–84.CrossRefGoogle Scholar
  13. 13.
    Seo JH, Kim T-W, Weinreb RN. Lamina cribrosa depth in healthy eyes. Invest Ophthalmol Vis Sci. 2014;55(3):1241–51.CrossRefGoogle Scholar
  14. 14.
    Cheung CY, Chen D, Wong TY, Tham YC, Wu R, Zheng Y, et al. Determinants of quantitative optic nerve measurements using spectral domain optical coherence tomography in a population-based sample of non-glaucomatous subjects. Invest Ophthalmol Vis Sci. 2011;52(13):9629–35.CrossRefGoogle Scholar
  15. 15.
    You JY, Park SC, Su D, Teng CC, Liebmann JM, Ritch R. Focal lamina cribrosa defects associated with glaucomatous rim thinning and acquired pits. JAMA Ophthalmol. 2013;131(3):314–20.CrossRefGoogle Scholar
  16. 16.
    Tatham AJ, Miki A, Weinreb RN, Zangwill LM, Medeiros FA. Defects of the lamina cribrosa in eyes with localized retinal nerve fiber layer loss. Ophthalmology. 2014;121(1):110–8.CrossRefGoogle Scholar
  17. 17.
    Park SC, Hsu AT, Su D, Simonson JL, Al-Jumayli M, Liu Y, et al. Factors associated with focal lamina cribrosa defects in glaucoma. Invest Ophthalmol Vis Sci. 2013;54(13):8401–7.CrossRefGoogle Scholar
  18. 18.
    Faridi OS, Park SC, Kabadi R, Su D, De Moraes CG, Liebmann JM, et al. Effect of focal lamina cribrosa defect on glaucomatous visual field progression. Ophthalmology. 2014;121(8):1524–30.CrossRefGoogle Scholar
  19. 19.
    Ren R, Yang H, Gardiner SK, Fortune B, Hardin C, Demirel S, et al. Anterior lamina cribrosa surface depth, age, and visual field sensitivity in the Portland Progression Project. Invest Ophthalmol Vis Sci. 2014;55(3):1531–9.CrossRefGoogle Scholar
  20. 20.
    Park H-YL, Jeon SH, Park CK. Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma. Ophthalmology. 2012;119(1):10–20.CrossRefGoogle Scholar
  21. 21.
    Inoue R, Hangai M, Kotera Y, Nakanishi H, Mori S, Morishita S, et al. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma. Ophthalmology. 2009;116(2):214–22.CrossRefGoogle Scholar
  22. 22.
    Kim M, Bojikian KD, Slabaugh MA, Ding L, Chen PP. Lamina depth and thickness correlate with glaucoma severity. Indian J Ophthalmol. 2016;64:358–63.CrossRefGoogle Scholar
  23. 23.
    Furlanetto RL, Park SC, Damle UJ, Sieminski SF, Kung Y, Siegal N, et al. Posterior displacement of the lamina cribrosa in glaucoma: in vivo interindividual and intereye comparisons. Invest Ophthalmol Vis Sci. 2013;54(7):4836–42.CrossRefGoogle Scholar
  24. 24.
    Rho CR, Park H-YL, Lee NY, Park CK. Clock-hour laminar displacement and age in primary open-angle glaucoma and normal tension glaucoma. Clin Exp Ophthalmol. 2012;40(4):e183–9.CrossRefGoogle Scholar
  25. 25.
    Lee EJ, Kim T-W, Weinreb RN. Reversal of lamina cribrosa displacement and thickness after trabeculectomy in glaucoma. Ophthalmology. 2012;119(7):1359–66.CrossRefGoogle Scholar
  26. 26.
    Lee EJ, Kim T-W, Weinreb RN, Kim H. Reversal of lamina cribrosa displacement after intraocular pressure reduction in open-angle glaucoma. Ophthalmology. 2013;120(3):553–9.CrossRefGoogle Scholar
  27. 27.
    Lee SH, Yu D-A, Kim T-W, Lee EJ, Girard MJA, Mari JM. Reduction of the Lamina Cribrosa curvature after trabeculectomy in Glaucoma. Invest Ophthalmol Vis Sci. 2016;57(11):5006–14.CrossRefGoogle Scholar
  28. 28.
    Barrancos C, Rebolleda G, Oblanca N, Cabarga C, Munoz-Negrete FJ. Changes in lamina cribrosa and prelaminar tissue after deep sclerectomy. Eye (Lond). 2014;28(1):58–65.CrossRefGoogle Scholar
  29. 29.
    Krzyzanowska-Berkowska P, Melinska A, Helemejko I, Robert Iskander D. Evaluating displacement of lamina cribrosa following glaucoma surgery. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):791–800.CrossRefGoogle Scholar
  30. 30.
    Reis ASC, O’Leary N, Stanfield MJ, Shuba LM, Nicolela MT, Chauhan BC. Laminar displacement and prelaminar tissue thickness change after glaucoma surgery imaged with optical coherence tomography. Invest Ophthalmol Vis Sci. 2012;53(9):5819–26.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Eye Clinic, Lithuanian University of Health SciencesKaunasLithuania

Personalised recommendations