Structure Loss

  • Ruta Maciulaitiene
  • Ingrida Januleviciene


Glaucoma is a multifactorial disease with progressive loss of retinal ganglion cells (RGCs). Optic nerve head (ONH) is the main site of glaucomatous damage, with inferotemporal part being especially vulnerable to any mechanical force, because a dense bundle of RGCs axons enter ONH. Lamina cribrosa movement, distortion and collapse results in axonal damage. Loss of RGCs cause typical glaucomatous visual field defects. Continuous progression of the disease negatively affects a broad spectrum of everyday life activities, like good postural and balance control, walking, reading and driving. Ongoing structural glaucomatous changes negatively impact functional patients’ outcome, thus exacerbating their quality of life.

Therefore, the assessment of relationship between structure and function is one of the most important aspects to provide patients with best care. By evaluating the severity and progression of the disease in a timely manner, appropriate treatment regimen can be initiated for glaucoma patients.


Glaucoma Structure loss Retinal ganglion cells loss Function loss Structure-function relationship 


  1. 1.
    Ogden T, Duggan JDK, et al. Morphometry of nerve bundle pores in the optic nerve head of the human. Exp Eye Res. 1988;46:559–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Grytz R, Fazio MA, Libertiaux V, Bruno L, Gardiner S, Girkin CA, et al. Age-and race-related differences in human scleral material properties. Investig Ophthalmol Vis Sci. 2014;55(12):8163–72.CrossRefGoogle Scholar
  3. 3.
    Girard MJA, Suh JF, Bottlang M, Burgoyne CF, Downs JC. Scleral biomechanics in the aging monkey eye. Invest Ophthalmol Vis Sci. 2009;50(11):5226–37.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Yang H, He L, Gardiner SK, Reynaud J, Williams G, Hardin C, et al. Age-related differences in longitudinal structural change by spectral-domain optical coherence tomography in early experimental glaucoma. Invest Opthalmol Vis Sci. 2014;55(10):6409.Google Scholar
  5. 5.
    Downs JC, Girkin CA. Lamina cribrosa in glaucoma. Curr Opin Ophthalmol. 2017;28(2):113–9.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Strouthidis NG, Fortune B, Yang H, Sigal IA, Burgoyne CF. Longitudinal change detected by spectral domain optical coherence tomography in the optic nerve head and peripapillary retina in experimental glaucoma. Invest Ophthalmol Vis Sci. 2011;52:1206–19.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Yang H. 3-D histomorphometry of the normal and early glaucomatous monkey optic nerve head: lamina cribrosa and peripapillary scleral position and thickness. Invest Ophthalmol Vis Sci. 2007;48:4597–607.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Kim JA, Kim TW, Weinreb RN, Lee EJ, Girard MJA, Mari JM. Lamina Cribrosa morphology predicts progressive retinal nerve fiber layer loss in eyes with suspected Glaucoma. Sci Rep. 2018;8(1):1–10.CrossRefGoogle Scholar
  9. 9.
    Radius RL, Anderson DR. The course of axons through the retina and optic nerve head. Arch Ophthalmol. 1979;97:1154–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Quigley H, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99:137–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Hood DC, Raza AS, de Moraes CG, et al. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Hood DC, Raza AS, de Moraes CG, et al. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. Transl Vis Sci Technol. 2012;1:3.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dandona L, Quigley HA, Brown AE, et al. Quantitative regional structure of the normal human lamina cribrosa. A racial comparison. Arch Ophthalmol. 1990;108:393–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Sung MS, Kang BW, Kim HG, et al. Clinical validity of macular ganglion cell complex by spectral domain-optical coherence tomography in advanced glaucoma. J Glaucoma. 2014;23:341–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Nouri-Mahdavi K, Hoffmann D, Coleman AL, et al. Predictive factors for glaucomatous visual field progression in the Advanced Glaucoma Intervention Study. Ophthalmology. 2004;111:1627–35.PubMedCrossRefGoogle Scholar
  16. 16.
    Siaudvytyte L, Januleviciene I, Ragauskas A, Bartusis L, Meiliuniene ISB, et al. The difference in translaminar pressure gradient and neuroretinal rim area in glaucoma and healthy subjects. J Ophthalmol. 2014;2014:937360.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Feola AJ, Coudrillier B, Mulvihill J, Geraldes DM, Vo NT, Albon J, et al. Deformation of the lamina cribrosa and optic nerve due to changes in cerebrospinal fluid pressure. Invest Ophthalmol Vis Sci. 2017;58(4):2070–8.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Hayreh SS, Zimmerman MB, Podhajsky PAW. Nocturnal arterial hypotension and its role in optic nerve head and ocular ischemic disorders. Am J Ophthalmol. 1994;117:603–24.PubMedCrossRefGoogle Scholar
  19. 19.
    Flammer J, Haefliger IO, Orgül SRT. Vascular dysregulation: a principal risk factor for glaucomatous damage? J Glaucoma. 1999;8:212–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Drance S, Anderson DR, Schulzer M, Collaborative Normal-Tension Glaucoma Study Group. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am J Ophthalmol. 2001;131:699–708.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Nicolela MT, Ferrier SN, Morrison CA, et al. Effects of coldinduced vasospasm in glaucoma: the role of endothelin-1. Invest Ophthalmol Vis Sci. 2003;44:2565–72.PubMedCrossRefGoogle Scholar
  22. 22.
    Emre M, Orgül S, Haufschild T, Shaw SG, Flammer J. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol. 2005;89:60–3.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Cioffi GA. Ischemic model of optic nerve injury. Trans Am Ophthalmol Soc. 2005;103:592–613.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Pache M, Flammer J. A sick eye in a sick body? Systemic findings in patients with primary open-angle glaucoma. Surv Ophthalmol. 2006;51:179–212.PubMedCrossRefGoogle Scholar
  25. 25.
    Gherghel D, Hosking SL, Cunliffe IA. Abnormal systemic and ocular vascular response to temperature provocation in primary open-angle glaucoma patients: a case for autonomic failure? Invest Ophthalmol Vis Sci. 2004;45:3546–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Mackenzie PJ, Cioffi GA. Vascular anatomy of the optic nerve head. Can J Ophthalmol/J Can d’Ophtalmologie. 2008;43(3):308–12.Google Scholar
  27. 27.
    Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express. 2012;3:3127–37.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Liu L, Jia Y, Takusagawa HL, et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma. JAMA Ophthalmol. 2015;133:1045–52.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci. 2016;57:OCT451–9.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Yoles E, Schwartz M. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp Neurol. 1988;153(1):1–7.CrossRefGoogle Scholar
  31. 31.
    Hernandez MR. The optic nerve head in glaucoma: role of astrocytes in tissues remodeling. Prog Retin Eye Res. 2000;19:297–321.PubMedCrossRefGoogle Scholar
  32. 32.
    Qu J, Jakobs TC. The time course of gene expression during reactive gliosis in the optic nerve. PLoS One. 2013;8(6):e67094.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Liu B, Neufeld AH. Expression of nitric oxide synthase-2 (NOS-2) in reactive astrocytesof the human glaucomatous optic nerve head. Glia. 2000;30:78–86.CrossRefGoogle Scholar
  34. 34.
    Jourdain P, Bergersen LH, Bhaukaurally K, et al. Glutamate exocytosis from astrocytes controls synaptic strength. Nat Neurosci. 2007;10(3):331–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Ramirez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, et al. The role of microglia in retinal neurodegeneration: Alzheimer’s disease, Parkinson, and glaucoma. Front Aging Neurosci. 2017;9(JUL):1–21.Google Scholar
  36. 36.
    Leaver SG, Cui Q, Plant GW, Arulpragasam A, Hisheh S, Verhaagen J, Harvey AR. AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther. 2006;13:1328–41.PubMedCrossRefGoogle Scholar
  37. 37.
    Leaver SG, Cui Q, Bernard O, Harvey AR. Cooperative effects of bcl-2 and AAV-mediated expression of CNTF on retinal ganglion cell survival and axonal regeneration in adult transgenic mice. Eur J Neurosci. 2006;24:3323–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Di Polo A, Aigner LJ, Dunn RJ, Bray GM, Aguayo AJ. Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A. 1998;95:3978–83.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Quigley HA, Nickells RW, Kerrigan LA, et al. Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci. 1995;36:774–86.PubMedGoogle Scholar
  40. 40.
    Gupta N, Ang LC, Noel de Tilly L, et al. Human glaucoma and neural degeneration in intracranial optic nerve, lateral geniculate nucleus, and visual cortex. Br J Ophthalmol. 2006;90:674–8.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Yamamoto T, Kitazawa Y. Vascular pathogenesis of normal-tension glaucoma: a possible pathogenic factor, other than intraocular pressure, of glaucomatous optic neuropathy. Prog Retin Eye Res. 1998;17:127–43.PubMedCrossRefGoogle Scholar
  42. 42.
    Hare WA, Wheeler L. Experimental glutamatergic excitotoxicity in rabbit retinal ganglion cells: block by memantine. Invest Ophthalmol Vis Sci. 2009;50(6):2940–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Vorwerk CK, Lipton SA, Zurakowski D, et al. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Invest Ophthalmol Vis Sci. 1996;37(8):1618–24.PubMedGoogle Scholar
  44. 44.
    Lipton SA, Rosenberg PA. Mechanisms of disease: excitatory amino acids as a final common pathway in neurologic disorders. N Engl J Med. 1994;330(9):613–22.PubMedCrossRefGoogle Scholar
  45. 45.
    Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci. 1990;11(9):379–87.PubMedCrossRefGoogle Scholar
  46. 46.
    Hartwick AT, Zhang X, Chauhan BC, et al. Functional assessment of glutamate clearance mechanisms in chronic rat glaucomamodel using retinal ganglion cell calcium imaging. J Neurochem. 2005;94:794–807.PubMedCrossRefGoogle Scholar
  47. 47.
    Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, et al. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2001;42:975–82.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ruta Maciulaitiene
    • 1
  • Ingrida Januleviciene
    • 1
  1. 1.Ophthalmology Department, Medical AcademyLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations