Advertisement

Evaluation of Glaucomatous Structural Changes

  • Akvile StoskuvieneEmail author
Chapter

Abstract

Glaucoma is defined as a specific optic neuropathy [1], therefore optic nerve head (ONH) evaluation is one of the essential elements in disease detection and monitoring. Qualitative assessment of the ONH neuroretinal rim (NRR), cup-to-disc ratio, and retinal nerve fiber layer (RNFL) defect have been reported as valuable parameters in evaluation of glaucomatous damage with different degrees [2].

As structural ONH and RNFL changes usually manifest before functional visual field loss, the appliance of reliable quantifying assessment method may provide a more reliable and reproducible measurements in glaucoma [3, 4]. The introduction of modern imaging modalities such as the confocal scanning laser ophthalmoscope (GDx), scanning laser polarimetry (HRT), and optical coherence tomography (OCT) have offered objective and reproducible measurements of the topographic parameters of both the ONH and the RNFL. However, the scanning laser polarimeter (GDx Nerve Fiber Analyzer; Laser Diagnostics Technologies, San Diego, CA) assesses the RNFL thickness around the optic disc, confocal scanning laser ophthalmoscopy (Heidelberg Retinal Tomograph [HRT]; Heidelberg Engineering, Heidelberg, Germany) and optical coherence tomography (OCT, various devices and manufacturers are available) provide quantitative data of both RNFL thickness and topographic parameters of the ONH [5].

As indicators of biological processes are estimated as disease markers, changes in the ONH topography, peripapillary RNFL thickness, the ganglion cell layers thickness in the macula will be discussed in this section.

References

  1. 1.
    Bathija R, Gupta N, Zangwill L, Weinreb RN. Changing definition of glaucoma. J Glaucoma. 1998;7(3):165–9.CrossRefGoogle Scholar
  2. 2.
    Jonas JB, Budde WM, Panda-Jonas S. Ophthalmoscopic evaluation of the optic nerve head. Surv Ophthalmol. 1999;43:293–320.CrossRefGoogle Scholar
  3. 3.
    Kerrigan-Baumrind LA, Quigley HA, Pease ME, et al. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Invest Ophthalmol Vis Sci. 2000;41:741–8.PubMedGoogle Scholar
  4. 4.
    Sommer A, Pollack I, Maumenee AE. Optic disc parameters and onset of glaucomatous field loss. I. Methods and progressive changes in disc morphology. Arch Ophthalmol. 1979;97:1444–8.CrossRefGoogle Scholar
  5. 5.
    Sharma P, Sample PA, Zangwill LM, Schuman JS. Diagnostic tools for Glaucoma detection and management. Surv Ophthalmol. 2008;53(6 SUPPL):1–24.  https://doi.org/10.1016/j.survophthal.2008.08.003.CrossRefGoogle Scholar
  6. 6.
    Bendschneider D, Tornow RP, Horn FK, Laemmer R, Roessler CW, Juenemann AG, Kruse FE, Mardin CY. Retinal nerve fiber layer thickness in normals measured by spectral domain OCT. J Glaucoma. 2010;19(7):475–82.  https://doi.org/10.1097/IJG.0b013e3181c4b0c7.CrossRefPubMedGoogle Scholar
  7. 7.
    Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, et al. Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev. 2015;11:CD008803.  https://doi.org/10.1002/14651858.CD008803.pub2.CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Zangwill LM, Bowd C, Berry CC, Williams J, Blumenthal EZ, et al. Discriminating between normal and glaucomatous eyes using the Heidelberg retina Tomograph, GDx nerve fiber analyzer, and optical coherence tomograph. Arch Ophthalmol. 2001;119(7):985–93.  https://doi.org/10.1001/archopht.119.7.985.CrossRefPubMedGoogle Scholar
  9. 9.
    Bussel II, Wollstein G, Schuman JS. OCT for glaucoma diagnosis, screening and detection of glaucoma progression. Br J Ophthalmol. 2014;98:ii15–9.  https://doi.org/10.1136/bjophthalmol-2013-304326.CrossRefPubMedGoogle Scholar
  10. 10.
    Sung KR, Kim JS, Wollstein G, Folio L, Kook MS, Schuman JS. Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis. Br J Ophthalmol. 2011;95:909–14.  https://doi.org/10.1136/bjo.2010.186924.CrossRefPubMedGoogle Scholar
  11. 11.
    Leung CK, Cheung CYL, Weinreb RN, Qiu K, Liu S, Li H, et al. Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis. Invest Ophthalmol Vis Sci. 2010;51:217–22.  https://doi.org/10.1167/iovs.09-3468.CrossRefPubMedGoogle Scholar
  12. 12.
    Mwanza J-C, Oakley JD, Budenz DL, Anderson DR, The Cirrus OCT Normative Database Study Group. Ability of CirrusTM HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes. Ophthalmology. 2011;118(2):241–248.e1.  https://doi.org/10.1016/j.ophtha.2010.06.036.CrossRefPubMedGoogle Scholar
  13. 13.
    Elbendary AM, Helal RM. Discriminating ability of spectral domain optical coherence tomography in different stages of glaucoma. Saudi J Ophthalmol. 2013;27:19–24.CrossRefGoogle Scholar
  14. 14.
    Kansal V, Armstrong JJ, Pintwala R, Hutnik C. Optical coherence tomography for glaucoma diagnosis: an evidence based meta-analysis. PLoS One. 2018;13(1):e0190621.  https://doi.org/10.1371/journal.pone.0190621.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    European Glaucoma Society. Glaucoma imaging. Savona: Dogma; 2017.Google Scholar
  16. 16.
    Rhee DJ. Glaucoma. Color atlas & synopsis of clinical ophthalmology. Chapter 9. 2nd ed: Wills Eye Institute. p. 136–49.Google Scholar
  17. 17.
    Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology. 2009;116(11):2110–8.  https://doi.org/10.1016/j.ophtha.2009.04.031. Epub 2009 Jun 4.CrossRefPubMedGoogle Scholar
  18. 18.
    Field H, Ii A, Zeiss C, Ag M. Accuracy of GDx VCC, HRT I, and clinical assessment of stereoscopic optic nerve head photographs for diagnosing glaucoma. Br J Ophthalmol. 2007;91(3):313–8.  https://doi.org/10.1136/bjo.2006.096586.CrossRefGoogle Scholar
  19. 19.
    Strouthidis N, Yang H, Reynaud J, et al. Comparison of clinical and spectral domain optical coherence tomography optic disc margin anatomy. Invest Ophthalmol Vis Sci. 2009;50(10):4709–18.  https://doi.org/10.1167/iovs.09-3586.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Reis ASC, O’Leary N, Yang H, et al. Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation. Invest Ophthalmol Vis Sci. 2012;53(4):1852–60.  https://doi.org/10.1167/iovs.11-9309.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chauhan BC, O’Leary N, AlMobarak FA, et al. Enhanced detection of open-angle Glaucoma with an anatomically accurate optical coherence tomography–derived neuroretinal rim parameter. Ophthalmology. 2013;120(3):535–43.  https://doi.org/10.1016/j.ophtha.2012.09.055.CrossRefPubMedGoogle Scholar
  22. 22.
    Advances in optic disc imaging. Presented by Francesco Oddone, 2016-04-01. http://www.mdata.gr/GlaucomaCongress2016/presentations/50 Last reach 2018-03-10.
  23. 23.
    Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. Glaucomatous damage of the macula. Prog Retin Eye Res. 2013;32:1–21.  https://doi.org/10.1016/j.preteyeres.2012.08.003.CrossRefPubMedGoogle Scholar
  24. 24.
    Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25.CrossRefGoogle Scholar
  25. 25.
    Guedes V, Schuman JS, Hertzmark E, Wollstein G, Correnti A, Mancini R, Lederer D, et al. Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology. 2003;110(1):177–89.CrossRefGoogle Scholar
  26. 26.
    Leung CK, Chan WM, Yung WH, Ng AC, Woo J, Tsang MK, Tse RK. Comparison of macular and peripapillary measurements for the detection of glaucoma: an optical coherence tomography study. Ophthalmology. 2005;112(3):391–400.CrossRefGoogle Scholar
  27. 27.
    Mori S, Hangai M, Sakamoto A, Yoshimura N. Spectral-domain optical coherence tomography measurement of macular volume for diagnosing glaucoma. J Glaucoma. 2010;19:528–34.  https://doi.org/10.1097/IJG.0b013e3181ca7acf.CrossRefPubMedGoogle Scholar
  28. 28.
    Tan O, Chopra V, Lu AT-H, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–2314.e2.  https://doi.org/10.1016/j.ophtha.2009.05.025.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Seong M, Sung KR, Choi EH, Kang SY, Cho JW, Um TW, et al. Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2010;51:1446–52.  https://doi.org/10.1167/iovs.09-4258.CrossRefPubMedGoogle Scholar
  30. 30.
    Kim NR, Lee ES, Seong GJ, Kim JH, An HG, Kim CY. Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma. Invest Ophthalmol Vis Sci. 2010;51:4646–51.  https://doi.org/10.1167/iovs.09-5053.CrossRefPubMedGoogle Scholar
  31. 31.
    Garas A, Vargha P, Hollo G. Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma. Eye (Lond). 2011;25:57–65.  https://doi.org/10.1038/eye.2010.139.CrossRefGoogle Scholar
  32. 32.
    Schulze A, Lamparter J, Pfeiffer N, Berisha F, Schmidtmann I, Hoffmann EM. Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2011;249:1039–45.  https://doi.org/10.1007/s00417-010-1585-5.CrossRefPubMedGoogle Scholar
  33. 33.
    Yang Z, Tatham AJ, Weinreb RN, Medeiros FA, Liu T, Zangwill LM. Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography. PLoS One. 2015;10(5):e0125957.  https://doi.org/10.1371/journal.pone.0125957.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of OphthalmologyLithuanian University of Health SciencesKaunasLithuania
  2. 2.Department of NeurologyLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations